1
入力文字列の長さの帰納法を使用して証明を書くにはどうすればよいですか?
私のコンピューティング理論コースでは、多くの問題は、入力文字列の長さの帰納法を使用して、有限オートマトンに関するステートメントを証明することを伴います。私は数学的帰納法を理解していますが、文字列が出てくると、本当につまずきます。誰かがそのような証拠を段階的に作成するプロセスを経てくれたら本当に感謝しています。 問題の例は次のとおりです(Hopcroft and Ullman 3rd Editionの演習2.2.10): 次の遷移表を持つDFAを検討してください。 0 1 ________ -> A | AB * B | BA このDFAで受け入れられている言語を非公式に記述し、入力文字列の長さの帰納法により、記述が正しいことを証明します。 これは本の中で答えられた問題なので、宿題をする人を探していません。誰かが私にそれをまっすぐに説明してくれるだけです。 本の答え:(ここ から引用) オートマトンは、1の数が偶数(状態A)か奇数(状態B)かを判断し、後者の場合は受け入れます。| w |の簡単な帰納法です。wが1の偶数である場合にのみ、dh(A、w)= Aであることを示します。根拠:| w | =0。その後、空の文字列には必ず1の偶数、つまりゼロの1があり、δ-hat(A、w)= Aになります。 帰納法:wより短い文字列のステートメントを想定します。次に、w = za、ここでaは0または1です。 ケース1: a =0。wの偶数が1の場合、zも同じです。帰納的仮説により、δ-hat(A、z)=A。DFAの遷移はδ-hat(A、w)= Aを示します。wが1の奇数である場合、zも同様です。帰納的仮説、δ-hat(A、z)= B、およびDFAの遷移により、δ-hat(A、w)= Bがわかります。したがって、この場合、δ-hat(A、w)= wが1の偶数である場合に限ります。 ケース2: a =1。wの偶数が1の場合、zの奇数は1です。帰納的仮説により、δ-hat(A、z)=B。DFAの遷移はδ-hat(A、w)= Aを示します。wの奇数が1の場合、zの偶数は1の。帰納的仮説、δ-hat(A、z)= A、およびDFAの遷移により、δ-hat(A、w)= Bがわかります。したがって、この場合もδ-hat(A、w )= wが1の偶数である場合にのみ。 を帰納法で証明する方法を理解しています。私は、これが文字列の構築とどのように機能するのか混乱しています。太字の部分に混乱しています。彼らがどのように思い付いたのか、どのように受け入れられたものを実際に証明したのか、それがどのように帰納的であるのかがわかりません。∑ni = …