私はロジスティック回帰の理解に何か不足していることを知っており、どんな助けも本当に感謝しています。 私が理解している限り、ロジスティック回帰は、入力が与えられた場合の「1」の結果の確率は、逆ロジスティック関数を通過した入力の線形結合であると仮定しています。これは、次のRコードに例示されています。 #create data: x1 = rnorm(1000) # some continuous variables x2 = rnorm(1000) z = 1 + 2*x1 + 3*x2 # linear combination with a bias pr = 1/(1+exp(-z)) # pass through an inv-logit function y = pr > 0.5 # take as '1' if probability > 0.5 #now …
GAMを使用すると、残留DFは(コードの最終行)になります。どういう意味ですか?GAMの例を超えて、一般に、自由度の数を整数以外の数にすることはできますか?26.626.626.6 > library(gam) > summary(gam(mpg~lo(wt),data=mtcars)) Call: gam(formula = mpg ~ lo(wt), data = mtcars) Deviance Residuals: Min 1Q Median 3Q Max -4.1470 -1.6217 -0.8971 1.2445 6.0516 (Dispersion Parameter for gaussian family taken to be 6.6717) Null Deviance: 1126.047 on 31 degrees of freedom Residual Deviance: 177.4662 on 26.6 degrees of …
CrossValidatedには、King and Zeng(2001)によるまれなイベントバイアス修正をいつ、どのように適用するかに関するいくつかの質問があります。私は別の何かを探しています。バイアスが存在するという最小限のシミュレーションベースのデモンストレーションです。 特に、王とZenの状態 「...まれなイベントデータでは、確率のバイアスはサンプルサイズが数千単位で実質的に意味があり、予測可能な方向にあります。推定イベント確率は小さすぎます。」 Rのこのようなバイアスをシミュレートする私の試みは次のとおりです。 # FUNCTIONS do.one.sim = function(p){ N = length(p) # Draw fake data based on probabilities p y = rbinom(N, 1, p) # Extract the fitted probability. # If p is constant, glm does y ~ 1, the intercept-only model. # If p is not …