3
なぜ確率空間を定義するためにシグマ代数が必要なのですか?
サンプル空間形成するさまざまな結果を使用したランダムな実験があり、イベントと呼ばれる特定のパターンに興味を持って調べますシグマ代数(またはシグマフィールド)は、確率測定を割り当てることができるイベントで構成されています。nullセットとサンプル空間全体の包含、ベン図表との結合と交点を記述する代数など、特定のプロパティが満たされています。 Ω,Ω,\Omega,F。P ∅ F.F.\mathscr{F}. PP\mathbb{P}∅∅\varnothing 確率は、代数と区間間の関数として定義されます。全体で、トリプルは確率空間を形成します。σσ\sigma[0,1][0,1][0,1](Ω,F,P)(Ω,F,P)(\Omega, \mathscr{F}, \mathbb{P}) 誰かが代数を持っていなかった場合に確率構造が崩壊する理由を簡単な英語で説明できますか?それらは、その書道「F」がありえないほど真ん中に押し込まれています。それらが必要だと信じています。イベントは結果とは異なることがわかりますが、\ sigma-代数がなければ何がおかしくなりますか?σσ\sigmaσσ\sigma 問題は、どのタイプの確率問題において、σσ\sigma代数を含む確率空間の定義が必要になるかです。 ダートマス大学のWebサイトにあるこのオンラインドキュメントは、わかりやすい英語の説明を提供します。アイデアは、単位周囲の円上で反時計回りに回転する回転ポインターです。 まず、図に示すように、単位円の円とポインターで構成されるスピナーを作成します。円上の点を選択してにラベルを付け、次に、円上の他のすべての点に、から反時計回りに測定した距離(など)のラベルを付けます。実験では、ポインターを回転させ、ポインターの先端にあるポイントのラベルを記録します。ランダム変数にこの結果の値を示します。サンプル空間は明らかに間隔000xxx000XXX[0,1)[0,1)[0,1)。各結果が等しく発生する可能性がある確率モデルを構築したいと思います。可能性のある結果の数が限られている実験で[...]のように進めた場合、可能性のある結果のすべてについて確率の合計がそうでないため、確率を各結果に割り当てる必要があります等しい1(実際、数え切れない数の実数を合計するのは難しい仕事です;特に、そのような合計が何らかの意味を持つためには、せいぜい数え切れないほどの被加数の多くがと異なる場合があり。)割り当てられた確率の全ては、その後、合計があり、 ではなくそれがあるべきように、。000000000000111 したがって、各ポイントに確率を割り当て、(数え切れないほど)無限の数のポイントがあるとすると、それらの合計はます。>1>1> 1