5
多くの独立変数から重要な予測因子を検出する
2つの重複しない母集団(患者と健康、合計n=60n=60n=60)のデータセットで、(300300300独立変数から)連続従属変数の有意な予測子を見つけたいと思います。予測変数間の相関が存在します。予測変数のいずれかが(可能な限り正確に従属変数を予測するのではなく)「実際に」従属変数に関連しているかどうかを調べることに興味があります。多数の可能なアプローチに圧倒されたので、どのアプローチが最も推奨されるかを尋ねたいと思います。 私の理解から、予測因子の段階的な包含または除外は推奨されません たとえば、予測子ごとに個別に線形回帰を実行し、FDRを使用した多重比較のためにp値を修正します(おそらく非常に保守的ですか?) 主成分回帰:個々の予測変数の予測力については説明できず、コンポーネントについてのみ説明できるため、解釈が困難です。 他の提案はありますか?