1
全体的な切片なしでlme4の多変量混合モデルの係数を解釈する方法は?
多変量(つまり、複数の応答)の混合モデルをで近似しようとしていRます。ASReml-rおよびSabreRパッケージ(外部ソフトウェアが必要)を除いて、これはでのみ可能であるようMCMCglmmです。パッケージに付属する論文MCMCglmm(pp.6)で、Jarrod Hadfieldは、そのようなモデルを複数の応答変数を1つの長い形式の変数に再形成し、全体的なインターセプトを抑制するようにフィッティングするプロセスについて説明しています。私の理解では、切片を抑制すると、応答変数の各レベルの係数の解釈がそのレベルの平均になるように変更されます。したがって、上記を前提として、多変量混合モデルを当てはめることは可能lme4ですか?例えば: data(mtcars) library(reshape2) mtcars <- melt(mtcars, measure.vars = c("drat", "mpg", "hp")) library(lme4) m1 <- lmer(value ~ -1 + variable:gear + variable:carb + (1 | factor(carb)), data = mtcars) summary(m1) # Linear mixed model fit by REML # Formula: value ~ -1 + variable:gear + variable:carb + (1 | factor(carb)) …