多変量(つまり、複数の応答)の混合モデルをで近似しようとしていR
ます。ASReml-r
およびSabreR
パッケージ(外部ソフトウェアが必要)を除いて、これはでのみ可能であるようMCMCglmm
です。パッケージに付属する論文MCMCglmm
(pp.6)で、Jarrod Hadfieldは、そのようなモデルを複数の応答変数を1つの長い形式の変数に再形成し、全体的なインターセプトを抑制するようにフィッティングするプロセスについて説明しています。私の理解では、切片を抑制すると、応答変数の各レベルの係数の解釈がそのレベルの平均になるように変更されます。したがって、上記を前提として、多変量混合モデルを当てはめることは可能lme4
ですか?例えば:
data(mtcars)
library(reshape2)
mtcars <- melt(mtcars, measure.vars = c("drat", "mpg", "hp"))
library(lme4)
m1 <- lmer(value ~ -1 + variable:gear + variable:carb + (1 | factor(carb)),
data = mtcars)
summary(m1)
# Linear mixed model fit by REML
# Formula: value ~ -1 + variable:gear + variable:carb + (1 | factor(carb))
# Data: mtcars
# AIC BIC logLik deviance REMLdev
# 913 933.5 -448.5 920.2 897
# Random effects:
# Groups Name Variance Std.Dev.
# factor(carb) (Intercept) 509.89 22.581
# Residual 796.21 28.217
# Number of obs: 96, groups: factor(carb), 6
#
# Fixed effects:
# Estimate Std. Error t value
# variabledrat:gear -7.6411 4.4054 -1.734
# variablempg:gear -1.2401 4.4054 -0.281
# variablehp:gear 0.7485 4.4054 0.170
# variabledrat:carb 5.9783 4.7333 1.263
# variablempg:carb 3.3779 4.7333 0.714
# variablehp:carb 43.6594 4.7333 9.224
このモデルの係数はどのように解釈されますか?この方法は、一般化線形混合モデルでも機能しますか?