確率密度関数の変数の変化の導出?
本のパターン認識と機械学習(式1.27)では、 py(y)=px(x)∣∣∣dxdy∣∣∣=px(g(y))|g′(y)|py(y)=px(x)|dxdy|=px(g(y))|g′(y)|p_y(y)=p_x(x) \left | \frac{d x}{d y} \right |=p_x(g(y)) | g'(y) | ここで、x=g(y)x=g(y)x=g(y)、px(x)px(x)p_x(x)は、変数の変化に関して対応するpdfpy(y)py(y)p_y(y)です。 書籍は、その観察が範囲に入るので、それがだと言う、の値が小さいためであろうδ X、範囲に変換する(Y 、Y + δ Y )。(x,x+δx)(x,x+δx)(x, x + \delta x)δxδx\delta x(y,y+δy)(y,y+δy)(y, y + \delta y) これは正式にどのように導出されますか? Dilip Sarwateからの更新 結果は、が厳密に単調な増加または減少関数である場合にのみ保持されます。ggg LV Raoの回答にいくつかのマイナーな編集 場合したがってGP(Y≤y)=P(g(X)≤y)={P(X≤g−1(y)),P(X≥g−1(y)),if g is monotonically increasingif g is monotonically decreasingP(Y≤y)=P(g(X)≤y)={P(X≤g−1(y)),if g is monotonically increasingP(X≥g−1(y)),if g is …