タグ付けされた質問 「generalized-linear-model」

「リンク関数」を介して非線形関係を可能にし、応答の分散を予測値に依存させることができる線形回帰の一般化。(通常の線形モデルを一般的な共分散構造と多変量応答に拡張する「一般線形モデル」と混同しないでください。)

3
対数変換された予測子および/または応答の解釈
従属変数のみ、従属変数と独立変数の両方、または独立変数のみが対数変換されるかどうかの解釈に違いがあるのか​​と思います。 の場合を考えます log(DV) = Intercept + B1*IV + Error IVはパーセントの増加として解釈できますが、 log(DV) = Intercept + B1*log(IV) + Error または私が持っているとき DV = Intercept + B1*log(IV) + Error ?
46 regression  data-transformation  interpretation  regression-coefficients  logarithm  r  dataset  stata  hypothesis-testing  contingency-tables  hypothesis-testing  statistical-significance  standard-deviation  unbiased-estimator  t-distribution  r  functional-data-analysis  maximum-likelihood  bootstrap  regression  change-point  regression  sas  hypothesis-testing  bayesian  randomness  predictive-models  nonparametric  terminology  parametric  correlation  effect-size  loess  mean  pdf  quantile-function  bioinformatics  regression  terminology  r-squared  pdf  maximum  multivariate-analysis  references  data-visualization  r  pca  r  mixed-model  lme4-nlme  distributions  probability  bayesian  prior  anova  chi-squared  binomial  generalized-linear-model  anova  repeated-measures  t-test  post-hoc  clustering  variance  probability  hypothesis-testing  references  binomial  profile-likelihood  self-study  excel  data-transformation  skewness  distributions  statistical-significance  econometrics  spatial  r  regression  anova  spss  linear-model 

2
ロジスティック回帰の人工データをシミュレートする方法は?
私はロジスティック回帰の理解に何か不足していることを知っており、どんな助けも本当に感謝しています。 私が理解している限り、ロジスティック回帰は、入力が与えられた場合の「1」の結果の確率は、逆ロジスティック関数を通過した入力の線形結合であると仮定しています。これは、次のRコードに例示されています。 #create data: x1 = rnorm(1000) # some continuous variables x2 = rnorm(1000) z = 1 + 2*x1 + 3*x2 # linear combination with a bias pr = 1/(1+exp(-z)) # pass through an inv-logit function y = pr > 0.5 # take as '1' if probability > 0.5 #now …


3
0〜1の結果(比率または分数)の回帰
私は、比率の予測モデルの構築を考えています、≤ B及び> 0及びB > 0を。だから、比率が間になる0と1。a / ba/ba/b≤ Ba≤ba \le ba > 0a>0a > 0b > 0b>0b > 0000111 線形回帰を使用できますが、自然に0.1に制限されるわけではありません。関係が線形であると信じる理由はありませんが、もちろん、とにかく、単純な最初のモデルとしてしばしば使用されます。 ロジスティック回帰を使用できますが、通常は2状態の結果の確率を予測するために使用され、範囲0.1からの連続値を予測するためではありません。 これ以上何も知らない場合、線形回帰、ロジスティック回帰、または非表示オプションcを使用しますか?

2
ロジスティック回帰検出力解析のシミュレーション-設計実験
この質問は、ロジスティック回帰とSASを使用した電力分析に関して私が尋ねた質問に関する@Greg Snowの回答に対応していますProc GLMPOWER。 実験を計画しており、要因ロジスティック回帰で結果を分析する場合、シミュレーション(およびここ)を使用して電力分析を実行するにはどうすればよいですか? 以下に2つの変数がある簡単な例を示します。最初の変数は3つの可能な値{0.03、0.06、0.09}を取り、2番目はダミーのインジケーター{0,1}です。それぞれについて、各組み合わせの応答率を推定します(レスポンダーの数/マーケティングされる人々の数)。さらに、因子の最初の組み合わせは他の因子の3倍(同等と見なすことができます)にしたいと考えています。これは、この最初の組み合わせが試行された真のバージョンだからです。これは、リンクされた質問で言及されたSASコースで与えられたようなセットアップです。 結果の分析に使用されるモデルは、主な効果と相互作用を伴うロジスティック回帰です(応答は0または1です)。 mod <- glm(response ~ Var1 + Var2 + I(Var1*Var2)) このモデルで使用するデータセットをシミュレートして電力解析を実行するにはどうすればよいですか? 私はSASを介してこれを実行するとProc GLMPOWER(使用STDDEV =0.05486016 に対応するsqrt(p(1-p))pが示す応答率の加重平均です)。 data exemplar; input Var1 $ Var2 $ response weight; datalines; 3 0 0.0025 3 3 1 0.00395 1 6 0 0.003 1 6 1 0.0042 1 9 0 0.0035 1 …

1
ロジスティック回帰出力、カイ2乗検定、ORの信頼区間でp値が異なるのはなぜですか?
治療を受けた後、結果変数が治癒するロジスティック回帰を構築しました(Curevs. No Cure)。この研究のすべての患者は治療を受けました。糖尿病にかかっていることがこの結果に関連しているかどうかを確認したいです。 Rでは、ロジスティック回帰の出力は次のようになります。 Call: glm(formula = Cure ~ Diabetes, family = binomial(link = "logit"), data = All_patients) ... Coefficients: Estimate Std. Error z value Pr(>|z|) (Intercept) 1.2735 0.1306 9.749 <2e-16 *** Diabetes -0.5597 0.2813 -1.990 0.0466 * ... Null deviance: 456.55 on 415 degrees of freedom Residual deviance: 452.75 …


1
ロジスティック回帰:anovaカイ2乗検定対係数の有意性(anova()vs summary()in R)
8つの変数を持つロジスティックGLMモデルがあります。Rでカイ2乗検定を実行しましたanova(glm.model,test='Chisq')が、変数の2つは、テストの一番上で注文したときに予測的であり、一番下で注文したときにはそれほど予測されませんでした。summary(glm.model)それらの係数は有意でない(高いp値)であることを示唆しています。この場合、変数は重要ではないようです。 変数の有意性のより良い検定-モデルの要約の係数の有意性またはからのカイ2乗検定のどちらがよいかを尋ねたかったのanova()です。また、どちらが一方よりも優れているのはいつですか? 私はそれは広範な質問だと思いますが、何を考慮すべきかについてのポインタは評価されるでしょう。

3
一般化線形モデルと一般化線形混合モデルの違い
混合GLMと非混合GLMの違いは何ですか?たとえば、SPSSでは、ユーザーがドロップダウンメニューを使用して次のいずれかに適合できます。 analyze-> generalized linear models-> generalized linear models & analyze-> mixed models-> generalized linear 欠損値の扱いは異なりますか? 私の従属変数はバイナリであり、いくつかのカテゴリ変数および連続独立変数があります。

3
glmモデルの残差診断プロットを解釈しますか?
glmモデルの残差プロットの解釈方法に関するガイドラインを探しています。特にポアソン、負の二項、二項モデル。モデルが「正しい」場合、これらのプロットから何を期待できますか?(たとえば、ポアソンモデルを扱う場合、予測値が増加すると分散が大きくなると予想されます) 答えはモデルに依存することを知っています。参考文献(または考慮すべき一般的なポイント)があれば参考になります。

2
ロジスティック回帰は閉じた形でいつ解決されますか?
かかる場合x∈{0,1}dx∈{0,1}dx \in \{0,1\}^d及びy∈{0,1}y∈{0,1}y \in \{0,1\}、我々は、ロジスティック回帰を用いたX所与Yを予測するタスクをモデル化すると仮定する。ロジスティック回帰係数はいつ閉じた形で記述できますか? 1つの例は、飽和モデルを使用する場合です。 つまり、定義しますP(y|x)∝exp(∑iwifi(xi))P(y|x)∝exp⁡(∑iwifi(xi))P(y|x) \propto \exp(\sum_i w_i f_i(x_i))。ここで、iiiはのべき集合の集合にインデックスを付け{x1,…,xd}{x1,…,xd}\{x_1,\ldots,x_d\}、fifif_iは1を返します。iii番目のセットのすべての変数が1の場合、それ以外の場合は0です。次に、このロジスティック回帰モデルの各wiwiw_iを、データの統計の有理関数の対数として表現できます。 閉じたフォームが存在する場合、他の興味深い例はありますか?

2
準二項分布とは何ですか(GLMのコンテキストで)?
準二項分布とは何か、それが何をするのか、直感的な概要を誰かが提供できることを望んでいます。私は特にこれらの点に興味があります: 準二項分布が二項分布とどのように異なるか。 応答変数がプロポーションの場合(例の値には0.23、0.11、0.78、0.98が含まれます)、準二項モデルはRで実行されますが、二項モデルは実行されません。 TRUE / FALSE応答変数が過度に分散しているときに準二項モデルを使用する理由。

2
負の二項回帰の仮定は何ですか?
私は大規模なデータセット(機密情報なので、あまり共有することはできません)を使用しており、負の二項回帰が必要であるという結論に達しました。私は以前にglm回帰を行ったことがなく、仮定が何であるかについて明確な情報を見つけることができません。MLRでも同じですか? 変数を同じ方法で変換できますか(自然変数である必要があるため、従属変数の変換は不適切な呼び出しであることが既にわかっています)。私はすでに、負の二項分布がデータの過剰分散に役立つと判断しました(分散は約2000、平均は48)。 助けてくれてありがとう!!

5
多重線形回帰の最小二乗推定量を導き出す方法は?
単純な線形回帰のケースでは、最小二乗推定量、あなたが知っている必要はないように推定するために、β 1 = Σ (X I - ˉ X)(Y I - ˉ Y)y= β0+ β1バツy=β0+β1xy=\beta_0+\beta_1xβ 0 β 1β^1= ∑ (x私− x¯)(y私− y¯)∑ (x私− x¯)2β^1=∑(xi−x¯)(yi−y¯)∑(xi−x¯)2\hat\beta_1=\frac{\sum(x_i-\bar x)(y_i-\bar y)}{\sum(x_i-\bar x)^2}β^0β^0\hat\beta_0β^1β^1\hat\beta_1 私がしたとし、どのように私は導出ん推定することなく?またはこれは不可能ですか?β 1 β 2y= β1バツ1+ β2バツ2y=β1x1+β2x2y=\beta_1x_1+\beta_2x_2β^1β^1\hat\beta_1β^2β^2\hat\beta_2


弊社のサイトを使用することにより、あなたは弊社のクッキーポリシーおよびプライバシーポリシーを読み、理解したものとみなされます。
Licensed under cc by-sa 3.0 with attribution required.