タグ付けされた質問 「anyons」

2
エニオンとは正確に何であり、トポロジカル量子コンピューティングにどのように関連していますか?
私は過去数日間、エニオンが何であるかについての基本的なアイデアを得ようとしています。しかし、トポロジカルな量子コンピューティングとエニオンを説明する限り、オンライン記事(Wikipediaを含む)は非常に曖昧で不可解なようです。 トポロジカル量子コンピューターのWikiページには次のように書かれています。 トポロジカル量子コンピュータと呼ばれる二次元準粒子採用理論的な量子コンピュータであるエニオン世界線の周りに互いを通過させる、編組形成三次元時空(すなわち、で時間1つのを加えた2つの空間次元を)。これらのブレード は、コンピューターを構成する論理ゲートを形成します。トラップされた量子粒子の使用に対する量子編組に基づく量子コンピューターの利点は、前者がはるかに安定していることです。小さい累積摂動は、量子状態のデコヒーレンスを引き起こし、計算にエラーを導入する可能性がありますが、そのような小さな摂動は、編組のトポロジ特性を変更しません。 これは面白そうだ。それで、この定義を見て、私はエニオンとは何かを調べようとしました: 物理学では、エニオンは2次元システムでのみ発生する準粒子の一種であり、その 性質はフェルミオンやボソンほど制限されていません。一般に、2つの同一の粒子を交換する操作は、グローバルな位相シフトを引き起こす可能性がありますが、観測可能量に影響を与えることはできません。 さて、私は持っているいくつかのものについてのアイデア準粒子であるが。たとえば、電子が半導体を通過するとき、その運動は他のすべての電子および原子核との相互作用によって複雑な方法で妨害されます。ただし、自由空間を乱されずに移動する異なる質量(有効質量)を持つ電子のようにほぼ動作します。質量の異なるこの「電子」は「電子準粒子」と呼ばれます。したがって、一般的に準粒子は、物質内で発生する可能性のある複雑な粒子または波動現象の近似値であると仮定する傾向があり、そうでなければ数学的に対処することは困難です。 しかし、その後、彼らが言っていることには従えませんでした。ボソンはボーズ・アインシュタイン統計に従う粒子であり、フェルミオンはフェルミ・ディラック統計に従う粒子であることは知っています。 質問: しかし、それらは「フェルミオンやボソンよりもずっと制限されていない」とはどういう意味ですか?「エニオン」は、ボソンやフェルミオンが従うものとは異なる種類の統計分布に従っていますか? 次の行では、2つの同一の粒子を交換すると、グローバルな位相シフトを引き起こす可能性がありますが、観測量に影響を与えることはできないと彼らは言います。この文脈でのグローバルな位相シフトとはどういう意味ですか?さらに、ここで実際に話しているのはどの 観測値ですか? これらの準粒子、つまり量子コンピューティングに実際に関連するエニオンはどのようになっていますか?「エニオンの世界線は、3次元(2空間と1空間)の三つ編み/結び目を形成します。これらの結び目は、デコヒーレンスの影響を受けにくい安定した物質の形成に役立ちます。」このTed-Edビデオは何らかのアイデアを与えてくれると思いますが、材料内の特定の閉じたパスを移動するための電子の制限(「エニオン」ではなく)に対処しているようです。 誰かがドットをつなぎ、直観的なレベルで「エニオン」の意味と重要性を理解するのを手伝ってくれるとうれしいです。最初は、本格的な数学的説明よりも、素人レベルの説明の方が役立つと思います。しかし、私は基本的な学部レベルの量子力学を知っているので、あなたはあなたの説明でそれを使うかもしれません。

1
エニオンの存在を確認する状況は?
質問に対する私の答えに対するコメント:エニオンとは正確に何であり、それらはトポロジカル量子コンピューティングにどのように関連していますか?自然界でのエニオンの発生の具体例を挙げてもらいました。私は3日間の検索に費やしましたが、すべての記事は「提案された実験」または「ほぼ確実な証拠」のいずれかを参照しています。 アーベルのエニオン: フラクショナル料金は1995年以来、直接測定されてきたが、私の検索では、すべての記事は、の証拠を指して、分数統計や交換因子、このほぼ7歳にポイントプレプリント彼らは言います、彼らは「確認」の理論的予測位相検出することを抽象θ = 2 π / 3の中でν = 7 / 3e私θ≠ ± 1e私θ≠±1e^{i\theta}\ne\pm1θ = 2 π/ 3θ=2π/3\theta =2\pi/3ν= 7 / 3ν=7/3\nu=7/3量子ホールシステムの状態。しかし、この論文は雑誌の査読に合格したことはないようです。arXivには、ジャーナルDOIへのリンクはありません。Google Scholarで「5つのバージョンをすべて表示」をクリックしましたが、5つすべてがarXivバージョンでした。それから私は、記事の名前が出版時に変更されたのではないかと疑ったので、著者のウェブサイトでそれを探しに行きました。最後の著者には、プリンストン大学の電気工学科が所属としてリストされていますが、その学科の人々のリストには表示されません(「People」をクリックした後、「Faculty」、「Technical」、「Graduate Students」、管理者」、「研究スタッフ」が表示されましたが、何も表示されませんでした)。2番目の最後の著者についても同じことが起こりました!最後から3番目の著者には、出版物リストのあるラボWebサイトがありますが、この論文のようなものは「800を超える出版物の選択」ページに表示されません。最後から4番目の著者は別の大学にいますが、彼のWebサイトの公開リストは、arXivページへのリンクとして提供されています(公開バージョンはまだ表示されていません)。最後から5番目、最後から6番目、最後から7番目の著者は、シカゴ大学のJames Franck Instituteと物理学科に所属していますが、どちらのWebサイトのPeopleページにも3つの名前は表示されません。著者の1人は台湾の大学にも所属しており、彼女のWebサイトには、問題のプレプリントの一部の人々と共著した出版物がリストされていますが、類似のタイトルや十分な著者リストを持つものはありません。興味深いことに、自動的に生成されたが手動で調整可能なGoogle ScholarページでもarXivバージョンはありませんが、一部の共著者との以前の論文(完全に異なるタイトルとエニオンの言及なし)があります。それはすべての著者を対象としています。通信メールは利用できませんでした。 ≠ ± 1≠±1\ne\pm1 非アーベルのエニオン: 私はここでこの引用を見つけました:「非アーベルのエニオンの実験的証拠、まだ決定的ではなく現在争われている[12]は2013年10月に提示されました[13]。」[ 12 ] の要約は、[ 13 ]の実験はもっともらしいモデルと矛盾しており、[ 13 ]の著者は非アーベル編組ではなく「クーロン効果」を測定したかもしれないと述べています。興味深いことに、[ 13の著者リストν= 7 / 3ν=7/3\nu=7/32個のπ/ 32π/32\pi/3

1
トーリックコードトーラスのサイズは、キュービットを保護する能力にどのように影響しますか?
トーリックコードハミルトニアンは次のとおりです。 Σバツ、y(ΠI ∈ P (X 、Y)Z私はxy+ ∏I ∈ V ( X 、Y)バツ私はx y)、Σバツ、y(Π私∈p(バツ、y)Z私バツy+Π私∈v(バツ、y)バツ私バツy)、\sum_{x,y}\left( \prod_{i\in p(x,y)} Z_{ixy} + \prod_{i\in v(x,y)} X_{ixy} \right), ここで、とはこの図に従って定義されています(WikipediaへのJames Wootonの貢献による):pvvvppp 現時点では、無限の2Dラティスがあります。 のy → ± ∞x → ± ∞バツ→±∞x\rightarrow \pm \infty y→ ± ∞y→±∞y\rightarrow \pm \infty。 しかし、次のような周期的な境界条件を設定した場合(そして、これについて間違っている場合は質問を自由に編集してください): p (x + 10 、y)= p (x 、y)p(バツ+10、y)=p(バツ、y)p(x+10,y)=p(x,y) v (x 、y+ …
弊社のサイトを使用することにより、あなたは弊社のクッキーポリシーおよびプライバシーポリシーを読み、理解したものとみなされます。
Licensed under cc by-sa 3.0 with attribution required.