タグ付けされた質問 「theano」


4
Intel GPUでTensorFlowを使用する
私はディープラーニングの初心者です。 TensorFlowをIntel GPUで使用する方法はありますか?はいの場合は、正しい方向に向けてください。 そうでない場合は、Intel Corporation Xeon E3-1200 v3 / 4th Gen Core Processor Integrated Graphics Controllerに使用できるフレームワーク(ある場合)(Keras、Theanoなど)をお知らせください。
20 tensorflow  keras  theano  gpu 

5
シーボーンヒートマップを大きくする
corr()元のdfからdf を作成します。corr()DFは、70 X 70から出てきたし、ヒートマップを可視化することは不可能です... sns.heatmap(df)。を表示しようとするcorr = df.corr()と、テーブルが画面に収まらず、すべての相関関係を確認できます。dfサイズに関係なく全体を印刷する方法ですか、ヒートマップのサイズを制御する方法ですか?
16 visualization  pandas  plotting  machine-learning  neural-network  svm  decision-trees  svm  efficiency  python  linear-regression  machine-learning  nlp  topic-model  lda  named-entity-recognition  naive-bayes-classifier  association-rules  fuzzy-logic  kaggle  deep-learning  tensorflow  inception  classification  feature-selection  feature-engineering  machine-learning  scikit-learn  tensorflow  keras  encoding  nlp  text-mining  nlp  rnn  python  neural-network  feature-extraction  machine-learning  predictive-modeling  python  r  linear-regression  clustering  r  ggplot2  neural-network  neural-network  training  python  neural-network  deep-learning  rnn  predictive-modeling  databases  sql  programming  distribution  dataset  cross-validation  neural-network  deep-learning  rnn  machine-learning  machine-learning  python  deep-learning  data-mining  tensorflow  visualization  tools  sql  embeddings  orange  feature-extraction  unsupervised-learning  gan  machine-learning  python  data-mining  pandas  machine-learning  data-mining  bigdata  apache-spark  apache-hadoop  deep-learning  python  convnet  keras  aggregation  clustering  k-means  r  random-forest  decision-trees  reference-request  visualization  data  pandas  plotting  neural-network  keras  rnn  theano  deep-learning  tensorflow  inception  predictive-modeling  deep-learning  regression  sentiment-analysis  nlp  encoding  deep-learning  python  scikit-learn  lda  convnet  keras  predictive-modeling  regression  overfitting  regression  svm  prediction  machine-learning  similarity  word2vec  information-retrieval  word-embeddings  neural-network  deep-learning  rnn 

1
KerasをマルチマシンマルチコアCPUシステムで実行する
KerasのLSTMを使用して(Theanoバックグラウンドを使用して)Seq2Seqモデルに取り組んでいます。数MBのデータでもトレーニングに数時間かかるため、プロセスを並列化したいと考えています。 GPUはCPUよりも並列化がはるかに優れていることは明らかです。現時点では、使用できるのはCPUだけです。16 CPUにアクセスできました(コアあたり2スレッドXソケットあたり4コアX 2ソケット) Theanoのマルチコアサポートのドキュメントから、1つのソケットの4つのコアすべてを使用することができました。したがって、基本的にCPUの使用率は400%で4CPUが使用され、残りの12 CPUは未使用のままです。どうすればそれらも活用できますか。Tensorflowが機能する場合は、Theano背景の代わりに使用することもできます。

1
トレーニングRNNがGPUを100%使用しないのはなぜですか?
RNNのトレーニングが通常、GPUの100%を使用しないのはなぜですか。 たとえば、Ubuntu 14.04.4 LTS x64上のMaxwell Titan XでこのRNNベンチマークを実行すると、GPU使用率は90%未満になります。 ベンチマークは次のコマンドを使用して起動されました: python rnn.py -n 'fastlstm' -l 1024 -s 30 -b 128 ボトルネックを診断するにはどうすればよいですか?
弊社のサイトを使用することにより、あなたは弊社のクッキーポリシーおよびプライバシーポリシーを読み、理解したものとみなされます。
Licensed under cc by-sa 3.0 with attribution required.