この用語はオーバーロードされているため、最初に簡単な定義から始めます。ポーズは、部分順序付与されたセットです。二つの要素所与、我々は定義することができ上部に結合し、それらの少なくともとして(参加)を、と同様に定義する下限最大として(結合)(出会う)を。≤ 、B ∈ X X ∨ Y X X ∧ Y
ラティスは、任意の2つの要素が一意のミートと一意の結合を持つポーズです。
格子(この形式)は、(簡単に)準モジュラリティ(サブセットラティスを含む)およびクラスタリング(パーティションラティス)の理論CS、およびドメイン理論(あまりよく理解していません)および静的に表示されます分析。
しかし、格子上のメトリック構造を使用するアプリケーションに興味があります。単純な例は、任意の反単調サブモジュラー関数(反単調は、場合が計量 X ≤ Y 、F (X )≤ F (Y )D (X 、Y )= 2 、F (X ∧ Y )- 、F (X )- F (Y )
このメトリックは、データセットの2つの異なるクラスタリングを比較する方法として広く使用されています。
メトリック構造を気にするラティスの他のアプリケーションはありますか?ドメイン理論/静的解析アプリケーションに興味がありましたが、これまでのところメトリックの必要性は見ていません。