複雑度クラスPPAD(たとえば、さまざまなNash平衡の計算)は、END OF THE LINEでポリタイム還元可能な合計検索問題のセットとして定義できます。
行の末尾:回路を考えるとSとPとNの入力ビットとNような出力ビットP(0 、N) = 0 、N!= S(0 、nは)、入力された検索Xを {0,1}にNようにP (S(x))!= x または S(P(x))!= x!= 0 n。
SやPなどの回路やアルゴリズムは、Papadimitrouの論文など、クエリごとにのみ明らかになる指数関数的に大きなグラフを暗黙的に定義します(PSPACEで問題を保持するために!)。
ただし、任意のグラフを有効にする回路をどのように設計するかはわかりません(グラフに体系的な構造がある場合、回路を見つけるのがはるかに簡単になります)。たとえば、ソース頂点にすべて0のラベルを付け、他のすべての頂点にバイナリラベルをランダムに割り当てた、指数関数的に長い有向線を表す多項式サイズの回路をどのように設計しますか?これは、PPAD関連の論文では暗示されているようです。
私がオンライン検索で最も近いのはGalperin / Widgersonの論文ですが、そこに記載されている回路は2つの頂点ラベルを取り、「これらの頂点は隣接していますか?」
それでは、nビットの入力を受け取り、その先行または後続のnビットのラベルをそれぞれ出力する、指数サイズのグラフの多項式サイズの回路をどのように設計しますか?または、誰かがこれをよく説明しているリソースを知っていますか?