所与の点におけるRのD及び距離Lは、それらのどの2つのユークリッド距離を超えるように、これらの点の最大の部分集合を見つけるリットル。
この問題の複雑さは何ですか?
2つのポイントの距離が最大である場合は常にエッジを持つポイント上のグラフでは、問題は最大クリークを見つけることに相当します。必ずしもすべてのグラフは(例は星であるこの方法で得ることができるので、逆は成り立たないかもしれK 1 、7のためにD = 2)。したがって、関連する質問は、このクラスのグラフについて何が知られているのかということです。