NP完全問題の(検索バージョン)の場合、検証は多項式時間で実行できるため、解決策の検証は明らかに見つけるよりも明らかに簡単です。
ではP検証高速化ソリューションを見つけることよりもときに、それは明らかにいないようですので、しかし、解決策はまた、多項式時間で見つけることができます。実際、さまざまな問題はこの観点とは異なる振る舞いをしているようです。いくつかの例:
3SUM:入力番号が与えられ、それらの合計が0になる3を見つけます。私が知る限り、既知の最速のアルゴリズムは 時間で実行され、この順序は最適であると推測されます。一方、解決策の検証ははるかに高速です。必要なのは、見つかった3つの数値が実際に合計して0になることを確認するだけだからです。O (n 2 − o (1 ))
すべてのペアの最短経路: エッジの重み付きのグラフが与えられた場合、最短経路距離行列を計算します。そのような行列が与えられたら、それを再計算するよりも、それが実際に正しい距離行列であることをより速くチェックできますか?私の推測では、答えはおそらく「はい」ですが、3SUMほど明白ではありません。
線形計画。クレームされた最適なソリューションが提供されている場合、補助情報も提供されている場合、最適なソリューションを再計算するよりも簡単に確認できます(最適なデュアルソリューション)。一方、主解のみが利用可能な場合、実際にLPを解くよりも、より速くチェックできるかどうかは明確ではありません。
質問:この主題について何が知られていますか?つまり、解を見つけるよりもPの問題の解を検証する方が簡単なのはいつですか?