一部の値p_0、p_1について、場合は「簡単に」、p = p_1の場合は「難しい」実数値パラメーターpでパラメーター化された問題があるとします。
1つの例は、グラフのスピン構成をカウントすることです。重み付きの適切なカラーリング、独立したセットを数えるオイラー部分グラフは、ハードコアモデル、ポッツモデル、およびイジングモデルのパーティション関数にそれぞれ対応します。単純なMCMCの場合、硬度の相転移は、混合時間が多項式から指数関数にジャンプするポイントに対応します(Martineli、2006)。
別の例は、確率モデルの推論です。与えられたモデルを、組み合わせと「すべての変数は独立している」モデルとすることにより、「単純化」します。以下のためにの問題はため、自明である、それはどこかの間では難治性であり、硬度のしきい値嘘。最も一般的な推論方法では、この方法が収束に失敗すると問題が難しくなり、発生するポイントは特定のギブス分布の位相遷移(物理的な意味)に対応します(Tatikonda、2002)。
連続パラメータが変化する際の硬度の「ジャンプ」の他の興味深い例は何ですか?
動機:グラフタイプまたはロジックタイプ以外の硬度の別の「次元」の例を見る