アルゴリズム設計の聖杯の1つは、線形計画法の強力な多項式アルゴリズム、つまり、ランタイムが変数と制約の数が多項式で制限され、パラメーターの表現のサイズに依存しないアルゴリズムを見つけることです(仮定単位コスト計算)。この質問を解決することは、線形計画法のためのより良いアルゴリズムの外で意味を持ちますか?たとえば、そのようなアルゴリズムの存在/非存在は、幾何学または複雑性理論に影響を及ぼしますか?
編集:結果によって私が意味することを明確にする必要があるかもしれません。私は数学的な結果または条件付きの結果、現在真実であることが知られている意味を探しています。たとえば、「BSSモデルのLPの多項式アルゴリズムは、代数的複雑度クラスFOOとBARを分離/崩壊させます」、または「強力な多項式アルゴリズムが存在しない場合、ポリトープに関するそのような推測を解決します」、または「a LPとして配合することができる問題Xのための強力な多項式のアルゴリズムは、興味深い結果を持っているでしょう何とかし」。Hirsch予想は、シンプレックスが多項式である場合にのみ適用されることを除いて、良い例です。