最長パスの問題はNPハードです。(典型的?)証明は、ハミルトニアンパス問題(NP完全)の縮小に依存しています。ここでは、パスは(ノード)シンプルであることに注意してください。つまり、パス内で頂点を複数回使用することはできません。したがって、明らかにエッジシンプルでもあります(パスでエッジが複数回発生することはありません)。
それでは、(ノード)シンプルパスを見つける要件を破棄し、エッジシンプルパス(トレイル)を見つけることに固執する場合はどうでしょう。一見、オイラーの小道を見つけることはハミルトニアンの道を見つけることよりもはるかに簡単なので、最長の道を見つけることは最長の道を見つけることよりも簡単であるという希望があるかもしれません。ただし、アルゴリズムを提供するものは言うまでもなく、これを証明する参考文献は見つかりません。
ここで行われた引数を知っていることに注意してください:https : //stackoverflow.com/questions/8368547/how-to-find-the-longest-heaviest-trail-in-an-undirected-weighted-graph ただし、引数これは、異なるグラフでノード単純なケースを解くことでエッジ単純なケースを解決できることを基本的に示しているため、現在の形式には欠陥があるようです(削減は間違った方法です)。他の方法でも機能するように削減を簡単に変更できるかどうかは明らかではありません。(それでも、少なくとも最長の問題は最長の問題より難しくないことを示しています。)
最長のトレイル(エッジシンプルパス)を見つけるための既知の結果はありますか?複雑さ(クラス)?(効率的な)アルゴリズム?