整数関係の(小さな)解が答えを出すように、サブセット和または番号分割問題のインスタンスをエンコードする方法はありますか?間違いではない場合、いくつかの確率論的な意味で?
選択した数値の範囲が超える「低密度」領域でサブセット合計問題を解くのにLLL(およびおそらくPSLQ)が適度に使用されていることを知っていますが、これらの方法はうまくスケールしません選択された数値の範囲が2 Nよりもはるかに小さい場合、サイズが大きく、「高密度」領域で失敗するインスタンス。ここで、低密度と高密度はソリューションの数を指します。低密度領域とは、存在するソリューションがほとんどまたはまったくないことを指し、高密度は多くのソリューションがある領域を指します。
高密度領域では、LLLは指定されたインスタンス間で(小さな)整数の関係を見つけますが、インスタンスのサイズが大きくなると、関係が実行可能なサブセット和または数分割問題の解である確率が小さくなります。
整数関係の検出は最適な指数範囲内の多項式であるのに対して、サブセットサムとNPPは明らかにNP完全であるため、一般的にこれはおそらく不可能ですが、インスタンスがランダムに均一に描画される場合、これをより簡単にできますか?
または、この質問をするのではなく、計算の指数関数的な増加の代わりに最適な答えから指数関数の限界を減らす方法があるかどうかを尋ねるべきですか?