グラフの色分けの問題は、ほとんどの人にとってすでに困難です。それでも、私は困難になり、ハイパーグラフの色付けに関する問題を尋ねる必要があります。
質問。
k-均一ハイパーグラフのほぼ最適なエッジカラーリングを見つけるための効率的なアルゴリズムは何ですか?
詳細---
k-均一ハイパーグラフは、各エッジに正確にk個の頂点が含まれるハイパーグラフです。単純なグラフの通常の場合は、k = 2です。より正確には、2つのエッジが実際に同じ頂点セットを持つラベル付き k-均一ハイパーグラフに興味があります。ただし、エッジがk-1以下の頂点で交差するk正規ハイパーグラフで何かを解決します。
ハイパーグラフのエッジカラーリングは、グラフの場合のように、同じ色のエッジが交差しないものです。色度指数χ '(H)は、通常のように、必要な色の最小数です。
決定論的またはランダム化された多項式時間アルゴリズムの結果が欲しいです。
効率的に見つけることができるものと実際の色指数χ '(H)の間の最もよく知られている近似係数/加算ギャップを探しています最大頂点次数Δ(H)、ハイパーグラフのサイズなど。
編集:以下のハイパーグラフ双対に関するSureshの発言によって促されます。この問題は、k正規ハイパーグラフの強い頂点カラーリングを見つける問題と同等であることに注意する必要があります。現在、異なる数の頂点が含まれている可能性があります]。また、隣接する2つの頂点の色が異なるように頂点を色付けする必要があります。この再定式化にも明らかな解決策はないようです。
備考
グラフの場合、Vizingの定理は、グラフGのエッジクロマティック数がΔ(G)またはΔ(G)+1であることを保証するだけでなく、その標準的な証明は、Δ(G )+1エッジ色。この結果は、k = 2の場合に興味があれば十分でしょう。ただし、k> 2任意に特に興味があります。
最大でt個の頂点で交差するすべてのエッジなどの制限を追加しない限り、ハイパーグラフのエッジの色付けの境界に関する既知の結果はないようです。ただし、χ '(H)自体に境界は必要ありません。「十分な」エッジカラーリングを見つけるだけのアルゴリズム。[また、ハイパーグラフに制限を付けたくありません。ただし、k-均一であることと、最大頂点次数の範囲を除きます。たとえば、f∈ω(1)に対してΔ(H)≤f(k) 。]
[ 補遺。私が今求めているMathOverlowに関連する質問を建設あるいは、彩色数の限界について。]