3
ロジスティック回帰を行う場合、不均衡なサンプルは重要ですか?
さて、20:1の経験則を考慮して、十分なサンプルがあると思います:合計7つの予測変数のかなり大きなサンプル(N = 374)。 私の問題は次のとおりです。使用する予測変数のセットが何であれ、100%の特異性と0%の感度よりも分類が良くなることはありません。満足のいくものではありませんが、候補予測変数のセット(これから逸脱することはできません)を考えると、これは実際には最良の結果になる可能性があります。 しかし、私はもっと良くできると思わずにはいられなかったので、従属変数のカテゴリはほぼ4:1の非常に不均一なバランスであることに気付きました。よりバランスのとれたサブサンプルで分類を改善できますか?