機械学習またはパラメーター推定の基本的な前提の1つは、目に見えないデータがトレーニングセットと同じ分布に由来するということです。ただし、実際のケースによっては、テストセットの分布はトレーニングセットとほとんど異なります。
製品の説明を約17,000クラスに分類しようとする大規模な複数分類問題について考えてみましょう。トレーニングセットには、非常に歪んだクラス事前分布があります。そのため、一部のクラスには多くのトレーニング例があり、一部のクラスにはほんのわずかしかありません。クライアントから未知のクラスラベルを持つテストセットが与えられたとします。トレーニングセットでトレーニングされた分類器を使用して、テストセットの各製品を17,000クラスのいずれかに分類しようとします。テストセットのクラス分布は歪んでいる可能性がありますが、異なるビジネス分野に関連している可能性があるため、トレーニングセットのそれとはおそらく非常に異なっています。2つのクラス分布が大きく異なる場合、トレーニングされた分類器はテストセットでうまく機能しない可能性があります。これは、Naive Bayes分類器で特に明らかです。
確率的分類器のトレーニングセットと特定のテストセットの違いを処理する原則的な方法はありますか?「トランスダクティブSVM」はSVMでも同様のことを行うと聞きました。特定のテストセットで最高のパフォーマンスを発揮する分類器を学習するための同様の手法はありますか?次に、この実用的なシナリオで許可されているように、異なるテストセットに対して分類器を再トレーニングできます。