AIC、BIC、GCV:ペナルティ付き回帰法で決定を下すのに最適なものは何ですか?
私の一般的な理解は、AICがモデルの適合度とモデルの複雑さの間のトレードオフを扱うことです。 A IC= 2 k − 2 l n (L )A私C=2k−2ln(L)AIC =2k -2ln(L) =モデル内のパラメーターの数kkk =尤度LLL ベイジアン情報基準BICは、AICと密接に関連しています。AICは、BICよりも少ない数のパラメーターにペナルティを科します。これらの2つは歴史的にどこでも使用されていることがわかります。しかし、一般化された相互検証(GCV)は私にとって新しいものです。GCVとBICまたはAICの関係 リッジのようなパネル化された回帰のペナルティ用語の選択で、これらの基準が一緒にまたは別々にどのように使用されますか? 編集: ここに考えて議論する例があります: require(lasso2) data(Prostate) require(rms) ridgefits = ols(lpsa~lcavol+lweight+age+lbph+svi+lcp+gleason+pgg45, method="qr", data=Prostate,se.fit = TRUE, x=TRUE, y=TRUE) p <- pentrace(ridgefits, seq(0,1,by=.01)) effective.df(ridgefits,p) out <- p$results.all par(mfrow=c(3,2)) plot(out$df, out$aic, col = "blue", type = "l", ylab = …