平均の信頼区間の近似誤差
ましょう{Xi}ni=1{Xi}i=1n\{X_i\}_{i=1}^nの値を取る確率変数IIDのファミリーである[0,1][0,1][0,1]平均を有する、μμ\mu及び分散σ2σ2\sigma^2。平均、使用するためのシンプルな信頼区間σσ\sigmaそれが知られるたびに、によって与えられ、 P(|X¯−μ|>ε)≤σ2nε2≤1nε2(1).P(|X¯−μ|>ε)≤σ2nε2≤1nε2(1). P( | \bar X - \mu| > \varepsilon) \le \frac{\sigma^2}{n\varepsilon^2} \le\frac{1}{n \varepsilon^2} \qquad (1). また、理由X¯−μσ/n√X¯−μσ/n\frac{\bar X- \mu}{\sigma/\sqrt{n}}は、標準正規確率変数として漸近的に分布します。正規分布は、近似信頼区間を「構築」するために使用される場合があります。 複数の選択肢の回答の統計試験では、私はこの近似を使用する代わりにしなければならなかった(1)(1)(1)いつでもn≥30n≥30n \geq 30。近似誤差が定量化されていないため、私は常にこれを非常に不快に思っています(想像以上です)。 なぜではなく、正規近似を使用(1)(1)(1)? 私は盲目的にルール適用するには、二度と、したくないn≥30n≥30n \geq 30。そうすることを拒否し、適切な代替手段を提供するのに役立つ良い参考文献はありますか?((1)(1)(1)は、私が適切な代替案と考えるものの例です。) ここで、σσ\sigmaとE[|X|3]E[|X|3]E[ |X|^3]は不明であり、簡単に制限されます。 私の質問は特に信頼区間に関する参照要求であるので、こことここで部分的な複製として提案された質問とは異なることに注意してください。そこでは答えられません。