5
偽の一様乱数:真の一様データよりも均等に分布
私は、均一に分布しているように見える乱数を生成する方法を探しています-そして、すべてのテストはそれらが均一であることを示します- 真の均一データよりも均等に分布していることを除いて。 「真の」均一なランダムの問題は、それらが時々クラスター化することです。この効果は、サンプルサイズが小さいほど強くなります。大まかに言って、U [0; 1]で2つのUniformランダムを描画すると、確率が0.1の範囲内にある可能性は約10%、0.01の範囲内にある可能性は1%です。 だから私は均一な乱数よりも均等に分布している乱数を生成する良い方法を探しています。 ユースケースの例:私はコンピューターゲームをやっていて、地図にランダムに宝物を置きたい(他のことは気にしない)とします。宝物をすべて1か所に集めたくはありません。地図全体に宝物を置くべきです。一様なランダムでは、たとえば10個のオブジェクトを配置した場合、5個ほどが互いに非常に近いという可能性は低くありません。これにより、あるプレイヤーが別のプレイヤーよりも有利になる場合があります。掃海艇について考えてみてください(十分な機雷がある場合は低いとはいえ)、あなたは本当に幸運で、ワンクリックで勝つことができます。 私の問題に対する非常に素朴なアプローチは、データをグリッドに分割することです。数が十分に大きい(そして要因がある)限り、この方法で余分な均一性を強制できます。したがって、U [0; 1]から12個のランダム変数を描画する代わりに、U [0; .5]から6個、U [0.5; 1]から6個、またはU [0; 1/3] + 4から4個描画できます。 U [1/3; 2/3]から+ U [2/3;から4; 1]。 この余分な均一性をユニフォームに取り入れるより良い方法はありますか?おそらく、バッチランダムに対してのみ機能します(単一のランダムを描画するときは、明らかに範囲全体を考慮する必要があります)。特に、後でレコードをシャッフルすることができます(したがって、最初の3番目から4番目のレコードではありません)。 少しずつやってみてはいかがですか?それで、最初はU [0; 1]にあり、次に各半分から2つ、各3つから1つ、各4つから1つですか?これは調査されましたか?xとyに異なるジェネレーターを使用して、それらを相関させないように注意する必要があります(最初のxyは常に下半分、2番目は左半分と下3番目、3番目は中央3番目と上3番目です)。 ..だから、少なくともいくつかのランダムなビンの並べ替えも必要です。そして、長期的には、それはあまりにも均一になると思います。 サイドノードとして、分布が均一になりすぎて真に均一にならないかどうかをテストすることはよく知られていますか?そのため、「真の統一」と「誰かがデータをいじり、アイテムをより均等に分散させる」ことをテストします。正しく思い出せば、Hopkins Statisticはこれを測定できますが、テストにも使用できますか?またやや逆KS-テスト:最大偏差が特定の予想しきい値を下回っている場合、データは均等に分散されていますか?