2
ニューラルネットワーク:オーバーフィットできないのはなぜですか?
(フィードフォワード単一層)ニューラルネットワークを使用して、2つの財務変数(回帰)から環境関連変数を予測しようとしています。キャレットパッケージの「train」関数を使用します。 nnet()キャレットパッケージのアルゴリズムを使用しています。2つの連続予測子と420のデータポイントがあります。 理論的理解のために、私はわざとモデルをオーバーフィットしようとしています。私の理解では、これは通常すべてのデータセットで機能するはずです。たとえば、「サイズ」(つまり、非表示単位の数)を増やすなどです。ただし、隠れたユニットのサイズを大幅に増やしても、過剰適合にはなりません。 したがって、「サイズ」を増やすことですべてのニューラルネットワークをオーバーフィットできると想定するのは間違っていますか?代わりに、他のどの変数が過剰適合につながる可能性がありますか? grid <- expand.grid(size = 20 ) control <- trainControl(method = "cv", number = 10, verboseIter = TRUE ) fit <- train(x=train_parametres, y=train_result, method = "mlp", metric = "Rsquared", learnFunc = "Std_Backpropagation", learnFuncParams = c(0.2, 0.0), maxit = 1000, trControl = control, tuneGrid = grid, preProcess = …