近年、オブジェクト検出の分野は、ディープラーニングパラダイムの普及後、大きな進歩を遂げました。YOLO、SSD、FasterRCNNなどのアプローチは、オブジェクト検出の一般的なタスクにおいて最新技術を保持します[ 1 ]。
ただし、特定のアプリケーションシナリオで、検出するオブジェクト/ロゴの参照画像が1つしか与えられていない場合、ディープラーニングベースの方法は適用性が低く、SIFTやSURFなどの局所特徴記述子がより適切な代替手段として表示されます。導入コストはほぼゼロです。
私の質問は、ディープラーニングがオブジェクトクラスごとに1つのトレーニング画像だけでオブジェクト検出にうまく使用されているアプリケーション戦略(できれば、それらを説明する研究論文だけでなく、利用可能な実装)を指摘できますか?
アプリケーションシナリオの例:
この場合、SIFTは画像内のロゴを正常に検出します。