2
Rの多変量重回帰
2つの従属変数(DV)があり、それぞれのスコアは7つの独立変数(IV)のセットによって影響を受ける可能性があります。DVは連続的ですが、IVのセットは連続変数とバイナリコード変数の混合で構成されています。(以下のコードでは、連続変数は大文字で、バイナリ変数は小文字で記述されています。) この研究の目的は、これらのDVがIV変数によってどのように影響を受けるかを明らかにすることです。次の多変量重回帰(MMR)モデルを提案しました。 my.model <- lm(cbind(A, B) ~ c + d + e + f + g + H + I) 結果を解釈するために、2つのステートメントを呼び出します。 summary(manova(my.model)) Manova(my.model) 両方の呼び出しからの出力は以下に貼り付けられ、大きく異なります。MMRの結果を適切に要約するために、2つのうちどちらを選択すべきかを誰かに説明してください。どんな提案も大歓迎です。 summary(manova(my.model))ステートメントを使用した出力: > summary(manova(my.model)) Df Pillai approx F num Df den Df Pr(>F) c 1 0.105295 5.8255 2 99 0.004057 ** d 1 0.085131 4.6061 2 99 …