2つの従属変数(DV)があり、それぞれのスコアは7つの独立変数(IV)のセットによって影響を受ける可能性があります。DVは連続的ですが、IVのセットは連続変数とバイナリコード変数の混合で構成されています。(以下のコードでは、連続変数は大文字で、バイナリ変数は小文字で記述されています。)
この研究の目的は、これらのDVがIV変数によってどのように影響を受けるかを明らかにすることです。次の多変量重回帰(MMR)モデルを提案しました。
my.model <- lm(cbind(A, B) ~ c + d + e + f + g + H + I)
結果を解釈するために、2つのステートメントを呼び出します。
summary(manova(my.model))
Manova(my.model)
両方の呼び出しからの出力は以下に貼り付けられ、大きく異なります。MMRの結果を適切に要約するために、2つのうちどちらを選択すべきかを誰かに説明してください。どんな提案も大歓迎です。
summary(manova(my.model))
ステートメントを使用した出力:
> summary(manova(my.model))
Df Pillai approx F num Df den Df Pr(>F)
c 1 0.105295 5.8255 2 99 0.004057 **
d 1 0.085131 4.6061 2 99 0.012225 *
e 1 0.007886 0.3935 2 99 0.675773
f 1 0.036121 1.8550 2 99 0.161854
g 1 0.002103 0.1043 2 99 0.901049
H 1 0.228766 14.6828 2 99 2.605e-06 ***
I 1 0.011752 0.5887 2 99 0.556999
Residuals 100
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Manova(my.model)
ステートメントを使用した出力:
> library(car)
> Manova(my.model)
Type II MANOVA Tests: Pillai test statistic
Df test stat approx F num Df den Df Pr(>F)
c 1 0.030928 1.5798 2 99 0.21117
d 1 0.079422 4.2706 2 99 0.01663 *
e 1 0.003067 0.1523 2 99 0.85893
f 1 0.029812 1.5210 2 99 0.22355
g 1 0.004331 0.2153 2 99 0.80668
H 1 0.229303 14.7276 2 99 2.516e-06 ***
I 1 0.011752 0.5887 2 99 0.55700
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1