タグ付けされた質問 「matrix-decomposition」

行列分解とは、行列を小さな行列の積に因数分解するプロセスを指します。大きな行列を分解することにより、多くの行列アルゴリズムを効率的に実行できます。

2
データのROC曲線を計算する
そのため、ハミング距離を使用して生体認証特性から個人を認証しようとしている16のトライアルがあります。しきい値は3.5に設定されています。私のデータは以下であり、トライアル1のみが真陽性です。 Trial Hamming Distance 1 0.34 2 0.37 3 0.34 4 0.29 5 0.55 6 0.47 7 0.47 8 0.32 9 0.39 10 0.45 11 0.42 12 0.37 13 0.66 14 0.39 15 0.44 16 0.39 私の混乱のポイントは、このデータからROC曲線(FPR対TPR OR FAR対FRR)を作成する方法が本当にわからないということです。どちらでもかまいませんが、どうやって計算するのか混乱しています。任意の助けいただければ幸いです。
9 mathematical-statistics  roc  classification  cross-validation  pac-learning  r  anova  survival  hazard  machine-learning  data-mining  hypothesis-testing  regression  random-variable  non-independent  normal-distribution  approximation  central-limit-theorem  interpolation  splines  distributions  kernel-smoothing  r  data-visualization  ggplot2  distributions  binomial  random-variable  poisson-distribution  simulation  kalman-filter  regression  lasso  regularization  lme4-nlme  model-selection  aic  r  mcmc  dlm  particle-filter  r  panel-data  multilevel-analysis  model-selection  entropy  graphical-model  r  distributions  quantiles  qq-plot  svm  matlab  regression  lasso  regularization  entropy  inference  r  distributions  dataset  algorithms  matrix-decomposition  regression  modeling  interaction  regularization  expected-value  exponential  gamma-distribution  mcmc  gibbs  probability  self-study  normality-assumption  naive-bayes  bayes-optimal-classifier  standard-deviation  classification  optimization  control-chart  engineering-statistics  regression  lasso  regularization  regression  references  lasso  regularization  elastic-net  r  distributions  aggregation  clustering  algorithms  regression  correlation  modeling  distributions  time-series  standard-deviation  goodness-of-fit  hypothesis-testing  statistical-significance  sample  binary-data  estimation  random-variable  interpolation  distributions  probability  chi-squared  predictor  outliers  regression  modeling  interaction 

2
部分空間への正射影後のデータ行列のSVD
いくつかの行列 SVDを知ることができるとしましょう:X = U S V TバツXXバツ= USVTX=USVTX = USV^T 直交行列がある場合(つまり、Aは正方であり、正規直交列がある場合)、X Aの SVD はあAAあAAバツあXAXA ここで、 W = A T Vです。バツA = USWTXA=USWTXA = USW^TW= ATVW=ATVW = A^TV しかし、Bに正規直交列があるが必ずしも正方形ではない場合、のSVDについて何か言えるでしょうか。言い換えれば、X BのSVD がX B = D E F Tである場合、行列D、E、またはFは、XおよびBの SVDに関して記述できますか?バツBXBXBBBBバツBXBXBバツB = D EFTXB=DEFTXB = DEF^TDDDEEEFFFバツXXBBB 更新: @whuberは、Bが正方形になるまで正規直交列を追加することで、を直交に拡張できることを示唆しています。この直交行列コール〜Bを。BBBBBBB〜B~\tilde B B〜= [ B ; B⊥]B~=[B;B⊥] …

2
推奨システムの行列因数分解モデルは、潜在的な特徴の数をどのように決定するのですか?
私は、単純なユーザーアイテム、評価推奨システムのための行列因数分解手法を設計しようとしています。これについて2つの質問があります。 最初に、映画の推奨のための行列因数分解手法について見た単純な実装で、作成者は潜在特徴の次元を初期化し、2つの潜在特徴のユーザーマトリックスとアイテムマトリックスのKと呼びましょう。定数Kを2としましょう。彼の潜在的な特徴行列PとQのNXKとMXKでした。Rは、NXM次元(NユーザーとMアイテム)で近似しようとしている元のユーザーアイテム評価マトリックスです。だから私の質問は、この場合に定数に設定するのではなく、どのようにして最適な「K」(潜在的な特徴の数)を決定するのですか? また、特定のユーザーの平均評価、ユーザーの性別、user_locationなど、私のデータセットに既にあるユーザーまたはアイテムの情報を、最終的な推奨を行いながら、行列分解のこの結果に組み込む方法もあります(私は推測)多分、他のコンテンツベースのフィルタリングモデルで表されるユーザーとアイテムの情報との混合モデルと、行列因数分解モデルが機能するでしょうか?) 1>最初の質問は、潜在的な特徴の最適な数をどのように決定するかですK 2>行列因数分解とコンテンツベースのフィルタリングの混合モデルを実装する最近の文献を知っている人はいます(人口統計情報を表す唯一の方法だと思うので)共通機能スペース内のユーザーとアイテムの数。)
弊社のサイトを使用することにより、あなたは弊社のクッキーポリシーおよびプライバシーポリシーを読み、理解したものとみなされます。
Licensed under cc by-sa 3.0 with attribution required.