2つの分布を組み合わせるモデルでの適合度の測定
モデル化しようとしている二重ピークのあるデータがあり、それらを個別に処理することができないほどピーク間に十分なオーバーラップがあります。データのヒストグラムは次のようになります。 このために2つのモデルを作成しました。1つは2つのポアソン分布を使用し、もう1つは2つの負の二項分布を使用します(過剰分散を説明するため)。どのモデルがデータに正確に適合するかを判断する適切な方法は何ですか? 私の最初の考えは、コルモゴロフ・スミルノフ検定を使用して各モデルをデータと比較し、次に尤度比検定を行って、1つが非常に優れているかどうかを確認することです。これは理にかなっていますか?もしそうなら、私は尤度比検定を実行する方法を正確に知りません。カイ二乗は適切ですか、そして私にはいくつの自由度がありますか? それが役立つ場合、モデルの一部の(非常に簡略化された)Rコードは次のようになります。 ## inital data points a <- read.table("data") #create model data model.pois = c(rpois(1000000,200),rpois(500000,250)) model.nb = c(rnbinom(1000000,200,0.5),rnbinom(500000,275,0.5) #Kolmogorov-Smirnov test #use ks.boot, since it's count data that may contain duplicate values kpois = ks.boot(model.pois,a) knb = ks.boot(model.nb,a) #here's where I'd do some sort of likelihood ratio test # …