タグ付けされた質問 「jackknife」

2
リサンプリング/シミュレーション方法:モンテカルロ、ブートストラップ、ジャックナイフ、交差検証、ランダム化テスト、および順列テスト
さまざまなリサンプリング方法(モンテカルロシミュレーション、パラメトリックブートストラップ、ノンパラメトリックブートストラップ、ジャックナイフ、交差検証、ランダム化テスト、置換テスト)とRを使用した独自のコンテキストでの実装の違いを理解しようとしています。 次のような状況があるとしましょう。Y変数(Yvar)とX変数(Xvar)を使用してANOVAを実行します。Xvarカテゴリーです。次のことに興味があります。 (1)p値の重要性–偽発見率 (2)Xvarレベルの 効果サイズ Yvar <- c(8,9,10,13,12, 14,18,12,8,9, 1,3,2,3,4) Xvar <- c(rep("A", 5), rep("B", 5), rep("C", 5)) mydf <- data.frame (Yvar, Xvar) これらのリサンプリング方法がどのように機能するかを明示した実例で、サンプリングの違いを説明してください。 編集: 私の試みは次のとおりです。 ブートストラップ 10ブートストラップサンプル、サンプルのサンプル番号、交換、サンプルを繰り返すことができることを意味します boot.samples <- list() for(i in 1:10) { t.xvar <- Xvar[ sample(length(Xvar), length(Xvar), replace=TRUE) ] t.yvar <- Yvar[ sample(length(Yvar), length(Yvar), replace=TRUE) ] b.df …

1
ブートストラップとジャックナイフ
ブートストラップ法とジャックナイフ法の両方を使用して、推定値の偏りと標準誤差を推定することができ、両方のリサンプリング法のメカニズムは大きな違いはありません。ただし、ジャックナイフは、研究と実践においてブートストラップほど人気が​​ありません。 ジャックナイフを使用する代わりにブートストラップを使用することの明らかな利点はありますか?


1
ジャックナイフの現代的な用途はありますか?
質問: ブートストラップはジャックナイフよりも優れています。ただし、パラメータ推定から不確実性を特徴付けるための唯一の、または少なくとも実行可能なオプションがジャックナイフである場合があるのではないかと思っています。また、実際の状況では、ブートストラップに比べて偏り/不正確なジャックナイフがどのように発生し、ジャックナイフの結果は、より複雑なブートストラップが開発される前に予備的な洞察を提供できますか? コンテキスト: 友人がブラックボックス機械学習アルゴリズム(MaxEnt)を使用して、「プレゼンスのみ」または「ポジティブのみ」の地理データを分類しています。一般的なモデル評価は、通常、相互検証とROC曲線を使用して行われます。しかし、彼女はモデルの出力を使用して、モデル出力の単一の数値記述を導き出し、その数値の周りの信頼区間を求めています。Jackknifingは、この値に関する不確実性を特徴付ける合理的な方法のようです。各データポイントはマップ上の一意の場所であり、置換で再サンプリングできないため、ブートストラップは関連しているようには見えません。モデリングプログラム自体は、最終的に彼女が必要とするものを提供できる可能性があります。ただし、jackknifingが役立つかどうか/いつに興味があるのでしょうか。

弊社のサイトを使用することにより、あなたは弊社のクッキーポリシーおよびプライバシーポリシーを読み、理解したものとみなされます。
Licensed under cc by-sa 3.0 with attribution required.