ブートストラップ:オーバーフィットの問題
元の観測値からそれぞれサイズサンプルを置き換えて描画することにより、いわゆるノンパラメトリックブートストラップを実行するとします。この手順は、経験累積分布関数による累積分布関数の推定と同等であると思います。BBBnnnnnn http://en.wikipedia.org/wiki/Empirical_distribution_function そして、連続した推定累積分布関数回から回の観測値をシミュレートして、ブートストラップサンプルを取得します。nnnBBB 私がこれに正しければ、経験的累積分布関数には約N個のパラメーターがあるため、過剰適合の問題に対処する必要があります。もちろん、漸近的に母集団cdfに収束しますが、有限サンプルについてはどうでしょうか?たとえば、100個の観測値があり、2つのパラメーターを使用してcdfをとして推定する場合、心配する必要はありません。ただし、パラメーターの数が100に達する場合、まったく妥当とは思えません。N(μ,σ2)N(μ,σ2)N(\mu, \sigma^2) 同様に、標準の多重線形回帰を使用する場合、誤差項の分布はとして推定されます。残差のブートストラップに切り替えることにした場合、エラー項の分布を処理するためだけに約 n個のパラメーターが使用されることに気づかなければなりません。N(0,σ2)N(0,σ2)N(0, \sigma^2)nnn この問題に明示的に対処しているいくつかの情報源を教えてもらえますか、間違っていると思われる場合はなぜ問題ではないのか教えてください。