タグ付けされた質問 「climate」

2
人工の地球温暖化の証拠は「ゴールドスタンダード」に当たります:彼らはどうやってこれをしましたか?
25.02.2019からのロイターの記事にあるこのメッセージは、現在すべてのニュースに掲載されています。 人工の地球温暖化の証拠は「ゴールドスタンダード」に当たります [科学者]は、人間の活動が地球の表面の熱を高めているという自信が「5シグマ」レベルに達したと言いました。温暖化なし。 これは、この記事「気候変動科学における3つの重要なイベントの記念日を祝う」を参照していると思います。これには、下図に示すプロットが含まれています無料の画像はこちらにあります)。同じ研究グループの別の記事は、より独創的な情報源と思われますが、ここにあります(ただし、ではなく1%の有意性を使用しています)。5つのσ5σ5\sigma このプロットは、リモートセンシングシステム、衛星応用研究センター、アラバマ大学ハンツビルの3つの異なる研究グループの測定値を示しています。 プロットは、トレンドの長さの関数として、信号対ノイズ比の3つの上昇曲線を表示します。 だから、何とか科学者は地球温暖化の人為的な信号を測定している(または気候変動を?)でレベル、明らかにいくつかある証拠の科学的な標準。5つのσ5σ5\sigma 私にとって、このようなグラフは抽象度が高く、多くの疑問を提起します、そして一般的に「どうやってこれをしたのですか?」という疑問について疑問に思います。。この実験を単純な単語に(しかし、それほど抽象的ではない)説明し、レベルの意味をどのように説明しますか?††^{\dagger} 5σ5つのσ5σ5\sigma 私は気候について議論したくないので、ここでこの質問をします。代わりに、統計コンテンツに関する回答、特にを使用/主張しているこのようなステートメントの意味を明確にするために答えを求めています。5つのσ5σ5 \sigma ††^\dagger帰無仮説とは何ですか?人為的な信号を得るために、彼らはどのように実験を設定しましたか?信号のエフェクトサイズは?それは単なる小さな信号であり、ノイズが減少しているため、または信号が増加しているため、今これを測定するだけです 5シグマのしきい値(独立、ランダム効果など)の交差を決定する統計モデルを作成するために、どのような仮定が行われますか?異なる研究グループの3つの曲線が異なるのはなぜですか、異なるノイズがあるのか​​、異なる信号があるのですか?後者の場合、確率と外部妥当性の解釈に関してそれはどういう意味ですか?

3
2つの離散フーリエ変換の類似性?
気候モデリングでは、地球の気候を適切に描写できるモデルを探しています。これには、半周期的なパターン(エルニーニョ南方振動など)の表示が含まれます。ただし、モデル検証は通常、比較的短い期間にわたって行われ、そこには適切な観測データがあります(過去150年以内)。これは、モデルが適切なパターンを表示しているが、位相がずれている可能性があることを意味します。そのため、相関などの線形比較では、モデルのパフォーマンスは良好ではありません。 このような周期的なパターンを検出するために、一般的に離散フーリエ変換が気候データの分析に使用されます(ここに例を示します)。検証ツールとして使用できる2つのDFTの類似性の標準的な尺度はありますか(つまり、モデルのDFTと観測のDFTの比較)。 2つの面積正規化DFTの最小値の積分を取ることは理にかなっていますか(絶対実数値を使用)。私はこのスコアをもたらすであろうと思う、X = 1X ∈ [ 0 、1 ]バツ∈[0、1]x\in[0,1]x = 1⟹バツ=1⟹x=1\impliesまったく同じパターン、およびx = 0⟹バツ=0⟹x=0\implies全く異なるパターン。そのような方法の欠点は何でしょうか?

1
複数の時系列を組み合わせるときに注意すべき問題は何ですか?
たとえば、ある地域のさまざまな観測所からの気温の記録など、いくつかの時系列があるとします。地域の気候の側面を説明できる、地域全体の単一の気温の記録を取得したいと考えています。直感的なアプローチは、各タイムステップですべてのステーションの平均をとるだけかもしれませんが、私の統計的なスパイダーセンス(これはまだ十分に連絡していません)は、これはそれほど簡単ではないかもしれないことを示しています。特に、領域全体を平均化すると、極端な温度の極端な部分がいくつか取り除かれ、近くのステーション間の依存関係に問題が発生する可能性があると思います。 このような戦略を試した場合、他にどのような問題に直面する可能性がありますか?それらを克服する方法、またはこの種のデータを組み合わせるより賢明な方法はありますか? 注:回答は、私が提供した空間的な例よりも一般的です。
弊社のサイトを使用することにより、あなたは弊社のクッキーポリシーおよびプライバシーポリシーを読み、理解したものとみなされます。
Licensed under cc by-sa 3.0 with attribution required.