2
バイアス分散分解:予測二乗予測誤差の項で、既約誤差が少ない
ハスティら "統計的学習の要素"(2009)データ生成処理考える とE(ε )= 0とヴァー(ε )= σ 2 εを。Y=f(X)+εY=f(X)+ε Y = f(X) + \varepsilon E(ε)=0E(ε)=0\mathbb{E}(\varepsilon)=0Var(ε)=σ2εVar(ε)=σε2\text{Var}(\varepsilon)=\sigma^2_{\varepsilon} それらは、点での予想二乗予測誤差の次のバイアス分散分解を示します(p。223、式7.9): Err (x 0)x0x0x_0 私自身の仕事で、私は指定されていない Fを(⋅)が、任意の予測取る yは(これが関連している場合)の代わりに。質問:バイアス2+分散 、より正確には Err(x0)-既約エラーの用語を探してい ます。Err(x0)=E([y−f^(x0)]2|X=x0)=…=σ2ε+Bias2(f^(x0))+Var(f^(x0))=Irreducible error+Bias2+Variance.Err(x0)=E([y−f^(x0)]2|X=x0)=…=σε2+Bias2(f^(x0))+Var(f^(x0))=Irreducible error+Bias2+Variance.\begin{aligned} \text{Err}(x_0) &= \mathbb{E}\left( [ y - \hat f(x_0) ]^2 | X = x_0 \right) \\ &= \dots \\ &= \sigma^2_{\varepsilon} + \text{Bias}^2(\hat f(x_0)) …