1
多次元データを補間するための好ましい効率的なアプローチは何ですか?
多次元データを補間するための好ましい効率的なアプローチは何ですか? 私が心配していること: 構築のためのパフォーマンスとメモリ、シングル/バッチ評価 1から6の寸法を処理する 線形または高次 勾配を取得する機能(線形でない場合) 通常のグリッドと散布グリッド 補間関数として使用、たとえば根を見つけたり最小化する 外挿機能 これの効率的なオープンソース実装はありますか? 私はscipy.interpolateとscikit-learnからのクリギングで部分的な運がありました。 スプライン、チェビシェフ多項式などは試しませんでした。 これは、このトピックでこれまでに見つけたものです。 長方形グリッド上のPython 4D線形補間 x、y、zの異なる間隔で定期的にサンプリングされた3Dデータの高速補間 通常のグリッドデータの高速補間 多変量散乱補間のどの方法が実用に最適ですか?