1
指定された変数に直交する(相関しない)予測を生成する
私が持っているXマトリックス、y変数、および他の変数をORTHO_VAR。私はをy使用して変数を予測する必要がありますXが、そのモデルからの予測は、可能な限りORTHO_VAR相関する一方で、直交する必要がありますy。 私は予測がノンパラメトリックな方法で生成されることを望みxgboost.XGBRegressorますが、どうしても必要な場合は線形法を使用できます。 このコード: import numpy as np import pandas as pd from sklearn.datasets import make_regression from xgboost import XGBRegressor ORTHO_VAR = 'ortho_var' TARGET = 'target' PRED = 'yhat' # Create regression dataset with two correlated targets X, y = make_regression(n_features=20, random_state=245, n_targets=2) indep_vars = ['var{}'.format(i) for i in range(X.shape[1])] # …
8
correlation
machine-learning
dataset
logistic-regression
prediction
linear-regression
prediction
dummy-variables
neural-network
image-classification
python
k-nn
python
neural-network
neural-network
deep-learning
keras
tensorflow
image-classification
tensorflow
reinforcement-learning
policy-gradients
machine-learning
decision-trees
neural-network
overfitting
data-analysis
metric
python
scikit-learn
distance
scipy
machine-learning
python
scikit-learn
decision-trees
logistic-regression
keras
image-classification
implementation
machine-learning
python
scikit-learn
random-forest
decision-trees
machine-learning
feature-selection
feature-engineering
word2vec
word-embeddings
natural-language-process
scikit-learn
time-series
clustering
k-means
python
cross-validation
pyspark
statistics
cross-validation
multiclass-classification
evaluation
machine-learning
nlp
machine-translation
neural-network
deep-learning
keras
tensorflow
image-classification
machine-learning
python
similarity
distance
lstm
text
named-entity-recognition
machine-learning
keras
optimization
gan
learning-rate
neural-network
data-mining
dataset
databases
books
neural-network
rnn