検証の損失がまだ低下している場合でも、過剰適合は発生しますか?
Kerasには、Kaggleコンテストに使用している畳み込み+ LSTMモデルがあります(参照1)。アーキテクチャを以下に示します。ラベル付けされた11000サンプルのセットでトレーニングしました(2つのクラス、初期有病率は〜9:1であるため、1を約1/1の比率にアップサンプリングしました)。しばらくの間、私はそれがノイズとドロップアウト層で制御下にあると思った。 モデルは見事にトレーニングされているように見え、最終的にトレーニングセット全体で91%を獲得しましたが、テストデータセットでテストすると、絶対ゴミになりました。 注意:検証の精度は、トレーニングの精度よりも高くなっています。これは、「典型的な」過剰適合の反対です。 私の直感では、検証の分割がわずかであるため、モデルは依然として入力セットにあまりにも強く適合し、一般化を失っています。もう1つの手がかりは、val_accがaccよりも大きいことです。これが最も可能性の高いシナリオですか? これが過剰に適合している場合、検証分割を増やすことでこれをまったく軽減できますか、それとも同じ問題に遭遇しますか? モデル: Layer (type) Output Shape Param # Connected to ==================================================================================================== convolution1d_19 (Convolution1D) (None, None, 64) 8256 convolution1d_input_16[0][0] ____________________________________________________________________________________________________ maxpooling1d_18 (MaxPooling1D) (None, None, 64) 0 convolution1d_19[0][0] ____________________________________________________________________________________________________ batchnormalization_8 (BatchNormal(None, None, 64) 128 maxpooling1d_18[0][0] ____________________________________________________________________________________________________ gaussiannoise_5 (GaussianNoise) (None, None, 64) 0 batchnormalization_8[0][0] ____________________________________________________________________________________________________ lstm_16 (LSTM) (None, …