XGBRegressorとxgboost.trainの大きな速度差は?
次のコードを使用してモデルをトレーニングする場合: import xgboost as xg params = {'max_depth':3, 'min_child_weight':10, 'learning_rate':0.3, 'subsample':0.5, 'colsample_bytree':0.6, 'obj':'reg:linear', 'n_estimators':1000, 'eta':0.3} features = df[feature_columns] target = df[target_columns] dmatrix = xg.DMatrix(features.values, target.values, feature_names=features.columns.values) clf = xg.train(params, dmatrix) 約1分で終了します。 Sci-Kit学習メソッドを使用してモデルをトレーニングする場合: import xgboost as xg max_depth = 3 min_child_weight = 10 subsample = 0.5 colsample_bytree = 0.6 objective = …