タグ付けされた質問 「network-modeling」

3
NPでのスーパーマリオフロー?
max-flow問題の古典的な拡張の1つは、「max-flow over time」問題です。2つのノードがソースとシンクとして区別される有向グラフが与えられます。 -単位時間と遅延。時間範囲も与えられます。目標は、時間ソースからシンクへの材料の最大量を取得する経時的なフローを計算することです。最大値のフローは、min-cost max-flowへの巧妙な古典的還元により、多項式時間で計算できます。TTTTTTT エッジに3番目の「寿命」パラメータがあるこのモデルの拡張に興味があります。アークに寿命があり、がアークを通して正のフローが送信される最も早い時間である場合、時間アークを破壊します。これは、スーパーマリオブラザーズの踏み台のように考えることができます。踏みつけた直後に落下するか破壊されるか、電源を入れると電源を切ることのできないエッジの電源に必要なバッテリーと考えることができます。 。(編集 :)決定問題は、フロー値の下限も与えられた場合、時間範囲の上限とフロー値の下限の両方を満たすフローをスケジュールできるかどうかです。TのT + ℓのBℓℓ\elltttt + ℓt+ℓt+\ellBBB これまでのところ、この問題はNP困難であることがわかります(3パーティション経由)。しかし、私はそれがNPにあるかどうか実際にはわかりません:ソリューションをコンパクトに表現する方法の保証はありますか?古典的なバージョンでは、この問題を回避するために、いくつかの特別なタイプの最適なフローが使用されます。 注:上記のモデルは、ノードでのフローの備蓄を許可または禁止する場合があり、離散時間モデルまたは連続モデルを持つ場合があるため、少し仕様が不十分です。これらのモデルのいずれかの問題を解決することは素晴らしいことです。
弊社のサイトを使用することにより、あなたは弊社のクッキーポリシーおよびプライバシーポリシーを読み、理解したものとみなされます。
Licensed under cc by-sa 3.0 with attribution required.