2次元グリッドのランダムウォークが確率1で原点に戻ることはよく知られています。3次元の同じランダムウォークは、原点に戻る確率が厳密に1未満であることが知られています。
私の質問は:
間に何かありますか?たとえば、私の空間が、z方向に無限に押し出された平面の境界領域であると仮定します。(しばしば2.5次元と呼ばれるもの)。2次元の結果が適用されますか、それとも3次元の結果ですか?
これは議論の中で出てきましたが、2次元的に振る舞うというヒューリスティックな議論の1つは、平面の有限領域が最終的にカバーされるため、ウォークの唯一の重要な部分はz方向に沿った1次元光線であり、起源に起こります。
2次元と3次元のケースを補間する他の形状はありますか?
更新(コメントから抜粋):関連する質問がMOで尋ねられました -短い要約は、歩行が偶数(2 + ϵ)次元である場合、不確実なリターンは分岐シリーズから大まかに続きます。ただし、上記の質問はIMOとは若干異なります。特定の利益をもたらす可能性のある他の種類の形状について尋ねているためです。