Lance Fortnow は最近、L!= NPの証明はP!= NPの証明よりも簡単であるべきだと主張しました。
- NPを対数空間から分離します。2001年のブログ前の対角化に関する調査(セクション3)で4つのアプローチを示しましたが、どれもうまくいきませんでした。PをNPから分離するよりもはるかに簡単なはずです。
リンクされた調査のセクション3では、意味のあるオラクル崩壊の結果はないと主張しています。
P!= NPの質問は非常に手ごわいままですが、L!= NPの質問ははるかに扱いやすいようです。この質問が難しいと考える理由はありません。空間に対する適切な相対化モデルの欠如は、LとNPが崩壊する意味のあるオラクルモデルがないことを意味します。また、Lは統一クラスなので、Razborov-Rudich [RR97]の制限は適用されません。
Lへの既知の相対化の障壁について質問が!= NPは、このサイトでPSPACE完全問題のTQBFは、このような崩壊を取得するためにoracleとして使用することができることを指摘答えを得ました。これが意味のあるオラクルモデルであったかどうかについての反対も答えられているようです。
しかし、「LとNPが崩壊する意味のあるオラクルモデルがない」を正しいステートメントと見なすべき理由を理解したとしても、L!= NPを証明することはP!= NP。L!= NPを証明することがP!= NPを証明するよりも本当に簡単な場合、ALogTime!= PHを証明することは間違いなく手の届く範囲にあるはずです。(別々の可能性の調査記事のヒントからLが。)私はALogTimeを推測!= PHはまだ開いている、と私はそれを証明するのは難しいだろうことを期待する十分な理由があるかどうかを知りたいのです。