おそらく、PLでの線形型の最も一般的な用途は、それらを使用してエイリアスを制御する言語を提供することです(つまり、線形値には多かれ少なかれ単一のポインターがあります)。
しかし、この使用法と線形論理の典型的な表示モデルとの間にはわずかな不一致があります。IIRC、ベントンは、デカルト閉カテゴリが強力な可換モナドを持っている場合、代数のカテゴリは対称モノイダル閉(つまり線形論理のモデル)になることを示しました。しかし、状態モナドは可換ではないため、この定理はエイリアス制御の使用には適用されません。そして確かに、過去数年でシンプソンと彼の同僚は、線形論理の項計算ではない一般的な強いモナドの計算を与えました。
だから私の質問は、状態を持つ線形言語の表示的意味論とは何ですか?割り当て、読み取り、および線形更新をモデル化できる非縮退(つまり、テンソルがデカルト積ではない)対称モニダル閉カテゴリはありますか?