前文。
複雑度クラスAMは、証明者 "Merlin"と検証者 "Arthur"の間の2ラウンドの対話型証明システムによって解決できる問題です。オブジェクトXの一部のプロパティをテストする問題は、次の場合にAMにあります。
用YESの(多項式長の)ランダムな「チャレンジ」メッセージのインスタンス、アーサーは、マーリンは(多項式の長さ)を策定アーサーは、その証拠として使用することができる返信することができ、高い確率で、発生Xは特性を有しています。
以下のためのNOのインスタンス、アーサーが生成するランダムチャレンジメッセージに対して、高い確率でマーリンが上のためにテストされているプロパティの証拠として使用することができる任意の返信策定することはできませんXを。
—説明したクラスは、Merlinに高い確率でだけでなく、アーサーが発行する可能性のある課題に対して有用な回答を提供することを要求する場合、変更されません。この場合、マーリンの答えは常にYESインスタンスに対して有効である必要があり、アーサーがテストするのは答えの有効性です。したがって、マーリンが無効な応答を生成した場合、アーサーは問題のインスタンスがNOインスタンスであることを認識します。これは私が検討したい設定です。
例はグラフ非同型です:頂点ラベルの同じセットを持つグラフGとHが与えられると、アーサーはグラフの1つをランダムに選択し、その頂点ラベルを並べ替えて、そのプレゼンテーションをMerlinに送信することで「スクランブル」バージョンFを生成できます。二つのグラフが非同形である場合、マーリンは、どの識別することができるG又はHかどうかを決定することによって選択したアーサーF ≅ GまたはF ≅ H、および2つのかを識別することによって応答することができるFと同形です。ただし、2つのグラフGとHが同型の場合、Merlinはどのグラフを区別できないFの出身であり、彼が答えるのは偶然だけです。したがって、YESインスタンスの場合、Merlinはあらゆるチャレンジに対して常に有効な応答を送信できます。以下のためのNOのインスタンスマーリンが送信する可能性のある任意の応答は、高確率無効となります。
上記の問題では、マーリンが各チャレンジに対してアーサーに発行できる有効な応答が存在するだけでなく、実際には一意の有効な応答があります。つまり、アーサー がGまたはHのどちらを選択したかを示します。同形である特定F。
質問。
以下のためにということ-これらの線に沿って制約を課すんYESのインスタンス、アーサーが送信する可能性のあるすべての挑戦のために、そこにある丁度1つのマーリンのための有効なレスポンス-等しいに知られていないクラス降伏の意味で、より制限クラスを得AMの?