stackoverflowのこの投稿から、数値の間隔をふるいにかける比較的高速なアルゴリズムがあり、その間隔に素数があるかどうかを確認しました。ただし、これは、(間隔に素数が存在するかどうか)の全体的な決定問題がPにあることを意味しますか?(私は読んでいないその投稿に対する多くの答えがあったので、この質問が重複または不要)。
一方では、間隔が十分に大きい場合(たとえば)、バートランドの仮説のようなものが適用され、この間隔には間違いなく素数があります。ただし、2つの素数の間に任意の大きなギャップがあることも知っています(たとえば。 [ N !、N !+ N ]
決定問題がPIにある場合でも、対応する検索問題も扱いやすいため、バイナリ検索を実行するときに既知の素数の分布に関して同じプロパティを使用できない場合があります。