ルービックキューブにアリがいます


44

標準の解決済みの3×3×3 ルービックキューブには、6つの異なる色の面があり、各面は1色の正方形の3×3グリッドです。白い顔は黄色の反対側、赤い反対側はオレンジ色、反対側の青色は緑色の反対側にあり、白色が上向きの場合、赤色は青色の左側にあります。

ルービックキューブレイアウト

アリが白い顔の中央の正方形に座って、赤い顔を向いていると想像してください。彼に3つのコマンドを与えることができます:

  • 進む(^)-次のグリッドの正方形に向かっている方向に一歩踏み出し、必要に応じて立方体の端を越えます。
  • 右(>)-右に(時計回りに)90°回転し、同じグリッドの正方形にとどまります。
  • 左(<)-左に(反時計回りに)90度回転し、同じグリッドの正方形にとどまります。

コマンドの任意のリストが与えられたら、アリが訪れる正方形の色を見つけます(白い開始正方形は含まれません)。

たとえば、コマンドシーケンスに^^>^^<^^^は次のようなパスがあります。

パス例

順番に表示されるグリッドの正方形の色は、開始正方形をカウントせずにwhite red red green green green yellow、またはだけwrrgggyです。

コマンド文字列を受け取り、キューブ上のアリのパスに対応<^>する文字列wyrobg(白、黄、赤、オレンジ、青、緑)を印刷または返すプログラムまたは関数を作成します。

バイト単位の最短コードが優先されます。Tiebreakerは以前の回答です。

ノート

  • 立方体は空中にあり、アリは効果的な微絨毛を持っているので、彼は立方体全体を横切ることができます。
  • キューブは常に解決された状態のままです。
  • 正方形の色は、正方形への移動時にのみ記録され、回転ではありません。最初の白い四角は記録しないでください。
  • 単一のオプションの末尾の改行が入力および/または出力に存在する場合があります。

テストケース

input : output
[empty string] : [empty string]
^ : w
< : [empty string]
> : [empty string]
><><<<>> : [empty string]
>^ : w
<<^> : w
^<^<^<^< : wwww
^^ : wr
<^^ : wb
>><<<<^^ : wo
<^^^<^^^^<>^>^^>^ : wbbboooggyo
^^^^^^^^^^^^^^ : wrrryyyooowwwr
<<<^<^>^<^<^<^>^^^^<^>>>>>^^<^>^^<^>^>^>^>< : wwgrwgggoooobbbbyrby
^^>^^<^^^ : wrrgggy


2
@MartinBüttnerアリには6つの脚があり、キューブには6つの側面があります。<肩をすくめる>私は知らない...
デジタルトラウマ

4
これはスターターのゴルフの挑戦ではありません。....ハードコーディングされていない座標系を思い付くのを忘れています。
マット

2
@DigitalTraumaこの課題は、六角形の答えのために叫んでいます:-)
ルイスメンドー

1
これまでに見た中で最悪のPowerShellコードに非常に近いです。
マット

回答:


18

Perlの、156 143 134 128 127 125 120 119 117 113 109バイト

+1を含む -p

STDINの制御文字列で実行します。たとえば

perl -p rubic.pl <<< "^^>^^<^^^"

rubic.pl

@1=wryobg=~/./g;s##$n=w&$&;$y+=$x-=$y+=$x,@1[0,4,2,5,3,1]=@1while--$n%9;@{$n&&--$y%3}[3,0..2]=@1;$1[$n+9]#eg

説明

古いバージョン:

@f=gboyrw=~/./g;s##$n=w&$&;$y+=$x-=$y+=$x,@f=@f[2,4,1,3,0,5]while--$n%9;@f=@f[0,$y=1,5,2..4]if$n&&$y--<0;$f[$n+8]#eg

この質問の課題は、アリの位置と方向を簡単に追跡し、それでも顔のアイデンティティを簡単に取得できる座標系を見つけることです。

私が選んだシステム(x,y)は、アリが顔yの中心で常に負の方向を向いているように、アリがいる顔に標準座標を置くこと(0,0)でした。そう:

rotate right: (x',y') <- (-y,  x)
rotate left:  (x',y') <- ( y, -x)  alternatve: 3 right rotations
Step forward:   y' <- y-1

yすでに-1アリがいた場合、アリは現在の顔を離れて次の顔に進みます。新しい座標系でxは、その値は保持されますが、y'1になります。

これにより、面内の簡単な座標系が得られます。顔自体にも何かが必要です。そこで私はから成る配列を使用します

The face to right of the ant            g in the initial position
The face to the left of of the ant      b
The face behind the ant                 o
The face opposite to the ant            y
The face before the ant                 r
The face the ant is on                  w

したがって、初期配列は(g,b,o,y,r,w)です。そう白色から赤色になり、これに移動、最後の4つの回転要素に次の顔相当に移動します(g,b,w,o,y,r)。右に曲がるのは、を与える最初の5つの要素の順列です(o,r,b,y,g,w)。左に曲がるのは同様の順列ですが、右に3回回すことでも実行できるため、この順列を3回適用します。また、順列を8回適用することで、まったく回転しないこともできます。実際に、右に曲がることは、順列を5回適用することでも実行できます。

これを知っているプログラムはかなり簡単です:

@f=gboyrw=~/./g                 Set up the initial face orientation
s## ... #eg                     Process each control string character
                                {this is equivalent to s#.#...#eg because
                                the empty regex repeats the last
                                succesful regex)
$n=w&$&                         Calculate n, the number of right
                                rotations+1 modulo 9.
                                This abuses a coincidence of the control
                                characters:
                                 "<" & "w" = "4" -> 3 right rotations
                                 ">" & "w" = "6" -> 5 right rotations
                                 "^" & "w" = "V" = 0 but that is 9 mod 9
                                 so leads to 8 right rtations

$y+=$x-=$y+=$x,                 This is the same as ($x,$y)=(-$y,$x), so
                                a right rotation of the face coordinates
@f=@f[2,4,1,3,0,5]              Right rotation of the face array
   while --$n%9                 Rotate right n-1 times. After this n=0
                                If this was a step then n was effectively 0.
                                So rotate right 8 times leaving n=-9

    ... if $n                   If a step...
               $y--             ... decrease y ...
             &&$y--<0           ... but if y was already negative ...
@f=@f[0,$y=1,5,2..4]            ... change face and set y to 1

$f[$n+8]                        return the last element (current face)
                                if this was a step, otherwise empty

そのため、最後のステートメントのローテーションは空の文字列につながり、次のステップは現在の顔につながります。したがって$_、各ステップで訪問した面に置き換えられます。


ここで何が起こっているかを理解すれば、その@1ビットは恐ろしい言語機能のように見えるものの驚くべき乱用です。
チャールズチャールズ

@NotthatCharlesはい、見た目とまったく同じように悪です。深刻なperlプログラムで最初に行うことは、を使用してその機能をオフにすることですuse strict。ちなみにモジュロ3をありがとう。
トンホスペル

12

Brachylog、287バイト

:1:2222:"w":"y":["r":"b":"o":"g"]{h""|[L:I:N:A:B:[C:D:E:F]]hhM("^",(NhI,CwX,EY,B:D:A:FZ;AwX,BY,[C:D:E:F]Z),NhJ,(I1,2313O;I2,(Nh2,N$($(O;Nh1,2222O;Nbh1,3223O;3322O);3322N,2332O;3223N,2233O;2233N,3132O;2332N,3231O);IJ,AX,BY,(M"<",[C:D:E:F]$(Z,N$(O;M">",[C:D:E:F]$)Z,N$)O)),Lb:J:O:X:Y:Z:1&}

入力としての動きを含む文字列を期待し、出力はありません。たとえば、STDOUTにbrachylog_main("^^>^^<^^^",_).書き込みwrrgggyます。

説明

§ There are 3 types of tiles we can be on: centers (noted 1), edges (2) and corners (3)
§ When we are on a tile, we can denote adjacent tiles in order: front, left, back, right
§ Similarly, we can denote the adjacent colors depending on the current one of the face
§
§ We start on the center (1) of face white ("w"). The adjacent tiles are 4 edges (2222)
§ The adjacent colors of white are red, blue, orange and green ("r":"b":"o":"g")
§ Yellow is opposite of white ("y")

§ We pass those initial conditions in an array, with the sequence of moves as first
§ element, as input to subpredicate 1


:1:2222:"w":"y":["r":"b":"o":"g"]{...}


§ SUB-PREDICATE 1

h""  § If the sequence of moves is empty, terminate the recursion
|    § Else...

§ Here are the variables' names of the input (which correspond to what's described in
§ the first few paragraphs)
[L:I:N:A:B:[C:D:E:F]]

§ If the move is "^"...
hhM("^",

   § The only way we change from one face to another is if the tile we end up on is of the
   § same type as the tile we started from
   (NhI,      § If this is the case
    CwX,      § Then write the color of the face we're facing, this face will now be the
              § current color
    EY,       § The third color in the list is now the opposite color
    B:D:A:FZ  § The opposite color is now the one we face, the color behind us (the third
              § in the list) is the one we were on, and the other 2 don't change

    § If the tiles are not the same type, then we don't change color
    ; 
    AwX,         § Write the current color, this will remain the color
    BY,          § Opposite color stays the same
    [C:D:E:F]Z), § Other colors stay in the same order since we moved forward
    NhJ,              § The new tile type is the one we were facing
       (I1,2313O;     § If we were on the center, then the adjacent tiles are 2313
       I2,            § Else if we were on an edge
         (Nh2,N$($(O; § then if we were facing an edge (changed face), then the new types
                      § of tiles are a double circular permutation of the previous types
         Nh1,2222O;   § Else if we were facing a center, then the new tiles are 2222
         Nbh1,3223O;  § Else (corners) if the tile to our left is the center, then 3223
         3322O)       § Else 3322

       ;              § Else if we were on a corner
       3322N,2332O;   § then one of those 4 possibilities applies
       3223N,2233O;
       2233N,3132O;
       2332N,3231O)

§ Else if the move is NOT "^"
;
IJ,AX,BY,         § We stay on the same type of tile, same color, same opposite color
(M"<",            § if the move is "turn left"
    [C:D:E:F]$(Z, § Then we circular permute the adjacent colors to the left
    N$(O          § we also circular permute the adjacent tiles to the left
;M">",            § Else if the move is "turn right"
    [C:D:E:F]$)Z, § Then we do the same but with right circular permutations
    N$)O)
),
Lb:J:O:X:Y:Z:1&   § Recursively call sub-predicate 1 with the new input, and the next move

同等のSWI-Prologコード

Brachylogのコンパイラに煩わされたくない場合は、次のコードを使用してこのソリューションをSWI-Prologで実行できます(これはBrachylogのコンパイラによって生成されます)。

:- style_check(-singleton).

:- use_module(library(clpfd)).

brachylog_main(Input,Output) :-
    1=1,
    brachylog_subpred_1([Input,1,2222,"w","y",["r","b","o","g"]],V0).


brachylog_subpred_1(Input,Output) :-
    1=1,
    brachylog_head(Input, "").

brachylog_subpred_1(Input,Output) :-
    1=1,
    [L,I,N,A,B,[C,D,E,F]] = Input,
    brachylog_head([L,I,N,A,B,[C,D,E,F]], V0),
    brachylog_head(V0, M),
    ( 1=1,
    "^" = M,
    ( 1=1,
    brachylog_head(N, I),
    brachylog_write(C, X),
    Y = E,
    Z = [B,D,A,F]
    ;
    1=1,
    brachylog_write(A, X),
    Y = B,
    Z = [C,D,E,F]
    ),
    brachylog_head(N, J),
    ( 1=1,
    I = 1,
    O = 2313
    ;
    1=1,
    I = 2,
    ( 1=1,
    brachylog_head(N, 2),
    brachylog_math_circular_permutation_left(N, V1),
    brachylog_math_circular_permutation_left(V1, O)
    ;
    1=1,
    brachylog_head(N, 1),
    O = 2222
    ;
    1=1,
    brachylog_behead(N, V2),
    brachylog_head(V2, 1),
    O = 3223
    ;
    1=1,
    O = 3322
    )
    ;
    1=1,
    N = 3322,
    O = 2332
    ;
    1=1,
    N = 3223,
    O = 2233
    ;
    1=1,
    N = 2233,
    O = 3132
    ;
    1=1,
    N = 2332,
    O = 3231
    )
    ;
    1=1,
    J = I,
    X = A,
    Y = B,
    ( 1=1,
    "<" = M,
    brachylog_math_circular_permutation_left([C,D,E,F], Z),
    brachylog_math_circular_permutation_left(N, O)
    ;
    1=1,
    ">" = M,
    brachylog_math_circular_permutation_right([C,D,E,F], Z),
    brachylog_math_circular_permutation_right(N, O)
    )
    ),
    brachylog_behead(L, V3),
    brachylog_call_predicate([V3,J,O,X,Y,Z,1], V4).



brachylog_behead(X,Y) :-
    string(X),!,
    sub_string(X, 1, _, 0, Y)
    ;
    number(X),!,
    number_codes(X,[_|T]),
    catch(number_codes(Y,T),_,Y=[])
    ;
    atom(X),!,
    atom_codes(X,[_|T]),
    atom_codes(Y,T)
    ;
    X = [_|Y].

brachylog_math_circular_permutation_left(X,Y) :-
    string(X),!,
    string_codes(X,C),
    C = [H|T],
    append(T,[H],D),
    string_codes(Y,D)
    ;
    number(X),!,
    number_codes(X,C),
    C = [H|T],
    append(T,[H],D),
    number_codes(Y,D)
    ;
    atom(X),!,
    atom_codes(X,C),
    C = [H|T],
    append(T,[H],D),
    atom_codes(Y,D)
    ;
    X = [H|T],!,
    append(T,[H],Y).

brachylog_math_circular_permutation_right(X,Y) :-
    string(X),!,
    string_codes(X,C),
    append(T,[H],C),
    D = [H|T],
    string_codes(Y,D)
    ;
    number(X),!,
    number_codes(X,C),
    append(T,[H],C),
    D = [H|T],
    number_codes(Y,D)
    ;
    atom(X),!,
    atom_codes(X,C),
    append(T,[H],C),
    D = [H|T],
    atom_codes(Y,D)
    ;
    append(T,[H],X),
    Y = [H|T].

brachylog_call_predicate(X,Y) :-
    reverse(X,R),
    R = [N|RArgs],
    number(N),
    reverse(RArgs, Args),
    (
    N = 0,!,
    Name = brachylog_main
    ;
    atom_concat(brachylog_subpred_,N,Name)
    ),
    (
    Args = [UniqueArg],!,
    call(Name,UniqueArg,Y)
    ;
    call(Name,Args,Y)
    ).

brachylog_write(X,Y) :-
    X = [List,Format],
    is_list(List),
    string(Format),!,
    format(Format,List),
    flush_output,
    Y = List
    ;
    write(X),
    flush_output,
    Y = X.

brachylog_head(X,Y) :-
    string(X),!,
    sub_string(X, 0, 1, _, Y)
    ;
    number(X),!,
    number_codes(X,[A|_]),
    number_codes(Y,[A])
    ;
    atom(X),!,
    atom_codes(X,[A|_]),
    atom_codes(Y,[A])
    ;
    X = [Y|_].

4

PowerShell、882バイト

使用法

スクリプトにコードを保存し、コマンドラインから次のように呼び出します。作業ディレクトリが現在のディレクトリであると仮定します。

.\WalkingAntcg.ps1 "^^>^^<^^^"

コード

$o=[char[]]"grbowy";[int]$c=4;[int]$global:x=1;[int]$global:y=1;[int]$f=1;[int]$n=5;
$u={$c=$args[0];$1="341504251435240503210123".Substring($c*4,4);$2=$1*2-match".$($args[1]).";$3=$Matches[0];"$3";"012345"-replace([char[]]"$1$c"-join"|")}
function t{param($o,$x,$y)if($o){switch($y){0{switch($x){0{$x=2}1{$y=1;$x=2}2{$y=2}}}1{switch($x){0{$y=0;$x=1}2{$y=2;$x=1}}}2{switch($x){0{$x=0;$y=0}1{$x=0;$y=1}2{$x=0}}}}}else{switch($y){0{switch($x){0{$y=2}1{$x=0;$y=1}2{$x=0}}}1{switch($x){0{$y=2;$x=1}2{$y=0;$x=1}}}2{switch($x){0{$x=2}1{$x=2;$y=1}2{$y=0;$x=2}}}}}$global:x=$x;$global:y=$y}
([char[]]$args[0]|%{switch($_){'^'{$global:y++;if($global:y-eq3){$global:y=0;$c="$f";$f="$n";$z=&$u $c $f;$f,$n="$($z[0][1])","$($z[1])"}$o[$c]}
"<"{$z=&$u $c $f;$f,$n="$($z[0][0])","$($z[1])";t 0 $global:x $global:y}
">"{$z=&$u $c $f;$f,$n="$($z[0][2])","$($z[1])";t 1 $global:x $global:y}}})-join""

説明の少ないゴルフコード

# Recorded order of cube colours and their indexes
# Green=0,Red=1,Blue=2,Orange=3,White=4,Yellow=5
$o=[char[]]"grbowy"
[int]$c=4   # Ant is currently on this colour
[int]$global:x=1   # X coordinate on this face
[int]$global:y=1   # Y coordinate on this face
[int]$f=1   # Colour that the Ant is facing
[int]$n=5   # Colour beyond that the ant is facing.
# If the ant moves of this cube to the next this value becomes the one he is facing.
# It is also the only colour not neighboring this current colour.

# Anonymous function that will return the colour facing left and right
$u = {
# Cube relationships relative to position. Groups of 4 colours that are important given the order...
# Green=0-3,Red=4-7,Blue=8-11,Orange=12-15,White=16-19,Yellow=20-23
# Get the colours surrounding the current colour we are on and the surrounding ones
# String version: "owrygwbyrwoybwgygrbogrbo"
$c=$args[0]
#  "341504251435240501230123"
$1="341504251435240503210123".Substring($c*4,4)
# double the string so that we can get the characters before and after the facing colour reliably
# Assign the output to surpress a boolean. $2 is not used. Shorter than a cast
$2=$1*2-match".$($args[1]).";$3=$Matches[0]
# Return two values. First is the colours to the left,current and right as a string.
# Second is the colour beyond the one we are facing. If we were to move forward two blocks
# we would end up on this colour
"$3";"012345"-replace([char[]]"$1$c"-join"|")
}

# function that will transpose the ants position based on right/left rotation.
# Using current x and y determines what the tranposed values are and return them.
function t{
    param($o,$x,$y)
    # X = $1; Y = $2
    # Left 0 Right 1
    if($o){
        # Right Transpose
        # All values are hard coded to rotate to their new positions
        switch($y){
            0{switch($x){0{$x=2}1{$y=1;$x=2}2{$y=2}}}
            # 1,1 is in the center and nothing changes
            1{switch($x){0{$y=0;$x=1}2{$y=2;$x=1}}}
            2{switch($x){0{$x=0;$y=0}1{$x=0;$y=1}2{$x=0}}}
        }
    }else{
        # Left Transpose
        # All values are hard coded to rotate to their new positions
        switch($y){
            0{switch($x){0{$y=2}1{$x=0;$y=1}2{$x=0}}}
            # 1,1 is in the center and nothing changes
            1{switch($x){0{$y=2;$x=1}2{$y=0;$x=1}}}
            2{switch($x){0{$x=2}1{$x=2;$y=1}2{$y=0;$x=2}}}
        }

    }
    # Update global variables with the ones from this function
    $global:x=$x
    $global:y=$y
}

# Process each character passed by standard input
([char[]]$args[0]|%{
    switch($_){
        # Moving Forward
        '^'{
        $global:y++
        if($global:y-eq3){
            # We have walked of the colour onto the next one. Update coordinates to the next colour
            $global:y=0
            $c="$f"
            $f="$n"
            # Get the new neighboring colour indexes
            $z=&$u $c $f
            $f,$n="$($z[0][1])","$($z[1])"
        }  
        # Output the colour we have just moved to.
        $o[$c]
        }
        # Turn Left
        "<"{$z=&$u $c $f;$f,$n="$($z[0][0])","$($z[1])"
        # Transpose the ants location by passing current location to the transposition function.
        t 0 $global:x $global:y
        }
        # Turn Right
        ">"{$z=&$u $c $f;$f,$n="$($z[0][2])","$($z[1])"
        # Transpose the ants location by passing current location to the transposition function.
        t 1 $global:x $global:y
        }
    }
}) -join ""
# Line above converts the output to a single string. 

アリの現在の状態(色、位置、方向)を記録するために使用される多くの単一文字変数を使用します。アリは常に上向きです。回転命令が読み取られると、キューブはその方向に転置されます。現在の位置に基づいて新しい位置を決定するために使用されるハードコーディングされた転置行列。

コードは問題のすべての例を満たします。


これはもっとゴルフできますが、今はうまく機能しているので、今度は繰り返しの一部を削除する必要があります。
マット

3

Tcl / Tk、422バイト

rename split S
array se {} [S wyywroorgbbg {}]
proc R a {foreach x [lassign $a y] {lappend b $x}
lappend b $y}
proc < {V H} {set ::H $V
set ::V [lreverse [R $H]]}
proc > {V H} [string map {V H H V} [info b <]]
proc ^ {V H} {
lassign $V x
lassign [set ::V [R $V]] y
set ::H [string map "$x $y $::($x) $::($y)" $::H]
puts -nonewline $y}
set V [S wwrrryyyooow {}]
set H [S wwgggyyybbbw {}]
foreach p [S {*}$argv {}] {$p $V $H}

残念ながら、これ以上小さくすることはできません。難読化されていないバージョン:

array set opposites [split wyywroorgbbg {}]

proc lrotate xs {
  foreach x [lassign $xs y] {
    lappend ys $x
  }
  lappend ys $y
}

proc < {V H} {
  set ::H $V
  set ::V [lreverse [lrotate $H]]
}

proc > {V H} {
  set ::H [lreverse [lrotate $V]]
  set ::V $H
}

proc ^ {V H} {
  lassign $V x
  lassign [set ::V [lrotate $V]] y
  set ::H [string map [list $x $y $::opposites($x) $::opposites($y)] $::H]
  puts -nonewline $y
}

set V [split wwrrryyyooow {}]
set H [split wwgggyyybbbw {}]
foreach p [split {*}$argv {}] {$p $V $H}
puts {}

水平および垂直のセルの色のリストを維持することで機能します。^ <および>はすべて、リストを適切に並べ替えるコマンドです。現在のセルは、各リストの最初のセルです。


3

ルビー、132

m=?w
g="bgoyr"
x=z=1
gets.bytes{|c|(m,g[2,3]=g[4],m+g[2,2]if(x+=1)%3<1
$><<m)if 93<c.upto(64){x,z,g=2-z,x,g[4]+g[2]+g[0]+g[3]+g[1]}}

残念ながら、このポジションシステムは、他の回答と非常によく似ています。 進行方向として現在の顔の位置xz追跡します+x。Forwardは常にx+=1であり、各面の境界は3で割り切れます(数値は気にしません。3のモジュラスだけです)。

m 現在の顔です(これによりいくつかのバイトが節約されます)

g配置されており[left, right, behind, opposite, front]、我々は変更する必要はありませんようにg[0..1]^

<単純に>3回行うことで行われます。


2

Java、619 605バイト

さて、ここには何もありません...

少なくともpowershellをしのぐ!

@KevinCruijssenのおかげで-14バイト

String t(String f){int h[]={0,0,1},p[]={0,2,0},n[],i,s,r;String o="",d[]="w,g,r,b,o,y".split(",");for(char c:f.toCharArray()){r=r(p);n=h;if(c==94){s=3;for(i=0;i<3;i++)if(h[i]==p[i]&p[i]!=0){if(r==0)n[1]=-1;if(r==1)n[0]=1;if(r==2)n[2]=-1;if(r==3)n[0]=-1;if(r==4)n[2]=1;if(r==5)n[1]=1;s=i;break;}i=0;for(int a:n)p[i++]+=a;if(s<3)h[s]=0;o+=d[r(p)];}s=r>-1&r<2?2:r>2&r<5?1:0;i=r==3|r==5?2:r>0&r<3?1:0;r=h[s];if(c==62){if(r==0){h[s]=h[i];h[i]=0;}else{h[i]=-r;h[s]=0;}}if(c==60){if(r==0){h[s]=-h[i];h[i]=0;}else{h[i]=r;h[s]=0;}}}return o;}int r(int[] p){return p[0]>1?3:p[0]<-1?1:p[1]>1?0:p[1]<-1?5:p[2]>1?2:4;}

説明:

2次元座標系を使用した他の回答の一部とは異なり、3次元システムを使用してアリの位置を追跡しました。

また、方向と移動を容易にするために、方向は3次元で保持されました。

各面には、座標x、y、またはzのいずれかが2に設定され(反対の面の場合は-2)、どの面であったかが示されます。

顔の切り替えは、アリが消えようとしているかどうか(位置と見出しが同じ値であるが、0ではない)を確認し、次の斜め方向に「落ちる」ことを確認し、見出しを非-対角線。これは驚くほど簡単でした。

旋削はより困難でした。常に同じ方向に進むようにするには、各文字のチェック内にif-elseステートメントを追加する必要があり、多くのバイトがかかりました。さらに、「上」軸と「右」軸は、各側でハードコーディングする必要がありました。

未ゴルフコード

(メソッドを明確にするため、以前の編集から変更されていません)

private static String[] sides="w,g,r,b,o,y".split(",");
public static String traverse(String commands)
{
  int[] heading = {0,0,1};
  int[] pos = {0,2,0};
  int[] newheading;
  int i;
  int saved;
  String out = "";
  for(char command:commands.toCharArray())
  {
     if(command=='^')
     {
        newheading=heading;
        saved=3;
        for(i=0;i<3;i++)
        {
           if(heading[i]==pos[i]&pos[i]!=0)
           {
              saved=determineSide(pos);
              if(saved==0)newheading[1]=-1;
              if(saved==1)newheading[0]=1;
              if(saved==2)newheading[2]=-1;
              if(saved==3)newheading[0]=-1;
              if(saved==4)newheading[2]=1;
              if(saved==5)newheading[1]=1;
              saved=i;
              break;
           }
        }
        i=0;
        for(int c:newheading)
        {
           pos[i++]+=c;
        }
        if(saved<3)heading[saved]=0;
        out+=sides[determineSide(pos)];
     }
     newheading=getPlane(determineSide(pos));
     if(command=='>')
     {
        saved=heading[newheading[0]];
        if(saved==0)
        {
           heading[newheading[0]]=heading[newheading[1]];
           heading[newheading[1]]=0;
        }
        else
        {
           heading[newheading[1]]=-saved;
           heading[newheading[0]]=0;
        }
     }
     if(command=='<')
     {
        saved=heading[newheading[0]];
        if(saved==0)
        {
           heading[newheading[0]]=-heading[newheading[1]];
           heading[newheading[1]]=0;
        }
        else
        {
           heading[newheading[1]]=saved;
           heading[newheading[0]]=0;
        }
     }
  }
  return out;
}
public static int determineSide(int[] pos)
{
  return pos[0]==2?3:pos[0]==-2?1:pos[1]==2?0:pos[1]==-2?5:pos[2]==2?2:4;
}
public static int[] getPlane(int side)
{
  int[] out=new int[2];
  out[0]=side==0|side==1?2:side==3|side==4?1:0;
  out[1]=side==3|side==5?2:side==1|side==2?1:0;
  //side==0?{2,0}:side==1?{2,1}:side==2?{0,1}:side==3?{1,2}:side==4?{1,0}:{0,2};
  return out;
}

1
それは痛い....私は今ゴルフを試してみると誓います!:)
マット

1
これは1年以上前に投稿されたことは知っていますが、ゴルフにはちょっとしたことがあります。- d[]={"w","g","r","b","o","y"}> "w,g,r,b,o,y".split(",")(-1バイト); 2x '^'-> 94(- 2バイト); 3x ==0-> <1(- 3バイト); 2x ==1-> <2(- 2バイト); などのために==2==3==4==5
ケビンCruijssen

@KevinCruijssenヒントをありがとう!
ブルー
弊社のサイトを使用することにより、あなたは弊社のクッキーポリシーおよびプライバシーポリシーを読み、理解したものとみなされます。
Licensed under cc by-sa 3.0 with attribution required.