ユニットの数を18のNoamの記録から15の新しい記録に減らします
(8 + 7ユニット、ボード上に昇格したユニットがない場合、ポーンは達成可能なすべてをキャプチャします):
これは最高ですか?
このソリューションが非対称であることは興味深いことです。両方のキングをポーンで反対側の側面にラップする場合、16ユニットが必要です。
編集:コメントに触発されて、私は立場が合法であることをより深く示したいと思います。そして事実がそれを証明すれば、出現にもかかわらず少なくとも1つの昇進がゲームの歴史の中で起こりました。まず、プロモーションが発生しなかったと想定します。
ホワイトchのポーンは8つのキャプチャでファイルに到達できた可能性がありますが、ブラックは残り7ユニットなので問題ありません。
ブラックポーンはどうですか?1個の黒ユニットを除くすべてが白chポーンに捕獲されました。このポーンはh7から来ることができなかったため、gfにキャプチャされたBfP( "Black f pawn")。BhPがgファイルにキャプチャされ、その順番でキャプチャされる場合、最も効率的です。
白いポーンは、ファイルd、e、f、gでそれぞれ1、2、2、3キャプチャを作成しました。したがって、黒のb、c、dポーンは、(dおよびeファイルに)十分な距離を確保するために、合計5つのキャプチャを行う必要があります。2つのキャプチャとともにgファイルに、ブラックは少なくとも7つのポーンキャプチャを作成しました。これは、BaPがWPで捕獲されなかった欠けているブラックユニットであると最も効率的に想定しています。
黒は7つのポーンキャプチャを作成し、白は残り8ユニットなので、最初は問題ありません。しかし、これらのキャプチャは、WaPとWbPが始まったファイルaまたはbにはありませんでした。これら2つのWPのうちの1つもBPにヒットしているはずですが、どうですか?可能な唯一のキャプチャはBaPです。
したがって、当初の想定が間違っていることが判明しました。少なくとも1つのプロモーションがゲーム中に発生しました。白か黒か。たとえば、WbPはb1で昇格します。たとえば、BbPは1回だけキャプチャし、c1で昇格します。
コメントで与えられた@Laskaの許可に従って、@ Rewan Demontayによって作成された35移動(最適?)の証明ゲームは次のとおりです。その意図は、彼らの位置のゲームの歴史。
1. Nc3 h5 2. Ne4 h4 3. Ng3 hxg3 4. fxg3 Nc6 5. Kf2 a5 6. Kf3 a4 7. Kg4 Nh6 + 8. Kh3 Ne5 9. b3 Nf3 10. exf3 Rg8 11. Bd3 Ng4 12. fxg4 d5 13。 Be4 dxe4 14. Qf3 e3 15. dxe3 Kd7 16. Qxb7 Ke6 17. Ne2 Kf6 18. Bb2 + Kg6 19. Bf6 Kh7 20. Bh4 Kh8 21. Nf4 Bf5 22. Rhf1 Bh7 23. Ng6 + fxg6 24. Rad1 c6 25. Rd5 cxd5 26. c4 axb3 27. cxd5 bxa2 28. Rf4 Qd6 29. Qb5 Qe6 30. dxe6 a1 = Q 31. Qc5 Qa4 32. Qd5 Qxf4 33. exf4 Ra5 34. Qg5 Rxg5 35. fxg5
ご覧のとおり、@ Laskaが正当に主張しているように、プロモーションが必要です。
編集:@Rewanに感謝します。そして、ここに候補の相互に窒息する最大のチェックメイトがあります:
26個のリーガルポジション:6個のマイナーピースがキャプチャーされ、4個がプロモートビショップに昇格しました 図の柔軟性:最大性に合わせて、後列の騎士ではなく主要な部分を選択しました。また、窒息した王を角から遠ざけました。
ポーンがd2-d3とe7-e6に移動して2つのケージのロックが解除されることに注意してください。