ScikitがCalibratedClassifierCVで分類子を調整する正しい方法
ScikitにはCalibratedClassifierCVがあり、これにより特定のX、yペアでモデルを調整できます。また、明確に述べていますdata for fitting the classifier and for calibrating it must be disjoint. それらがばらばらでなければならない場合、分類器を次のもので訓練することは合法ですか? model = CalibratedClassifierCV(my_classifier) model.fit(X_train, y_train) 同じトレーニングセットを使用することで、disjoint data規則に違反しているのではないかと心配しています。別の方法として、検証セットを用意することもできます my_classifier.fit(X_train, y_train) model = CalibratedClassifierCV(my_classifier, cv='prefit') model.fit(X_valid, y_valid) これには、トレーニング用のデータが少なくなるという欠点があります。また、CalibratedClassifierCVが別のトレーニングセットに適合するモデルにのみ適合しなければならない場合、なぜデフォルトのオプションはでありcv=3、これも基本推定量に適合しますか?相互検証は、独立したルールを単独で処理しますか? 質問:CalibratedClassifierCVを使用する正しい方法は何ですか?