1
XGBoost損失関数テイラー展開による近似
例として、番目の反復でXGBoostモデルの目的関数を使用します。ttt L(t)=∑i=1nℓ(yi,y^(t−1)i+ft(xi))+Ω(ft)L(t)=∑i=1nℓ(yi,y^i(t−1)+ft(xi))+Ω(ft)\mathcal{L}^{(t)}=\sum_{i=1}^n\ell(y_i,\hat{y}_i^{(t-1)}+f_t(\mathbf{x}_i))+\Omega(f_t) ここで、は損失関数、は番目のツリー出力、は正則化です。高速計算のための(多くの)重要なステップの1つは近似です:ℓℓ\ellftftf_ttttΩΩ\Omega L(t)≈∑i=1nℓ(yi,y^(t−1)i)+gtft(xi)+12hif2t(xi)+Ω(ft),L(t)≈∑i=1nℓ(yi,y^i(t−1))+gtft(xi)+12hift2(xi)+Ω(ft),\mathcal{L}^{(t)}\approx \sum_{i=1}^n\ell(y_i,\hat{y}_i^{(t-1)})+g_tf_t(\mathbf{x}_i)+\frac{1}{2}h_if_t^2(\mathbf{x}_i)+\Omega(f_t), ここで、およびは損失関数の1次および2次導関数です。gigig_ihihih_i 私が求めているのは、上記の近似がなぜ機能するのかを説明する説得力のある説得です: 1)上記の近似のXGBoostは、完全な目的関数のXGBoostと比較してどうですか?どのような潜在的に興味深い、高次の動作が近似で失われますか? 2)視覚化するのは少し難しい(損失関数に依存する)が、損失関数に大きな3次成分がある場合、近似は失敗する可能性が高い。これがXGBoostに問題を引き起こさないのはどうしてですか?