タグ付けされた質問 「sign-test」

4
勾配ブースティングマシンの精度は、反復回数が増えると低下します
caretR のパッケージを介して勾配ブースティングマシンアルゴリズムを試しています。 小さな大学入学データセットを使用して、次のコードを実行しました。 library(caret) ### Load admissions dataset. ### mydata <- read.csv("http://www.ats.ucla.edu/stat/data/binary.csv") ### Create yes/no levels for admission. ### mydata$admit_factor[mydata$admit==0] <- "no" mydata$admit_factor[mydata$admit==1] <- "yes" ### Gradient boosting machine algorithm. ### set.seed(123) fitControl <- trainControl(method = 'cv', number = 5, summaryFunction=defaultSummary) grid <- expand.grid(n.trees = seq(5000,1000000,5000), interaction.depth = 2, shrinkage …
15 machine-learning  caret  boosting  gbm  hypothesis-testing  t-test  panel-data  psychometrics  intraclass-correlation  generalized-linear-model  categorical-data  binomial  model  intercept  causality  cross-correlation  distributions  ranks  p-value  z-test  sign-test  time-series  references  terminology  cross-correlation  definition  probability  distributions  beta-distribution  inverse-gamma  missing-data  paired-comparisons  paired-data  clustered-standard-errors  cluster-sample  time-series  arima  logistic  binary-data  odds-ratio  medicine  hypothesis-testing  wilcoxon-mann-whitney  unsupervised-learning  hierarchical-clustering  neural-networks  train  clustering  k-means  regression  ordinal-data  change-scores  machine-learning  experiment-design  roc  precision-recall  auc  stata  multilevel-analysis  regression  fitting  nonlinear  jmp  r  data-visualization  gam  gamm4  r  lme4-nlme  many-categories  regression  causality  instrumental-variables  endogeneity  controlling-for-a-variable 


1
Wilcoxonの符号付き順位検定は、t検定または符号検定のどちらよりも望ましい状況ですか?
いくつかの議論(下記)の後、焦点の合った質問のより明確な画像が得られたので、ここに改訂された質問がありますが、コメントの一部は元の質問と関係がないように見えるかもしれません。 と思われるt検定は、対称分布のために迅速に収束することを、符号付き順位検定は、対称性を仮定し、そしてそれは、対称的な分布のために、手段/ pseudomedians /中央値の間に違いはありません。もしそうなら、どのような状況下で、比較的経験の浅い統計学者は、t検定と符号検定の両方を利用できるときに、符号付き順位検定が役立つと思いますか?私の(例えば社会科学)生徒の1人が、ある治療が別の治療よりも優れているかどうかをテストしようとしている場合(比較的簡単に解釈される測定、たとえば、「平均」差の概念によって)、署名する場所を見つけるのに苦労しています-私の大学では、一般的に教えられているように見えますが、ランクテストは無視されています。
弊社のサイトを使用することにより、あなたは弊社のクッキーポリシーおよびプライバシーポリシーを読み、理解したものとみなされます。
Licensed under cc by-sa 3.0 with attribution required.