2
「インザワイルド」なPハッキングについてどれだけ知っていますか?
フレーズp -hacking(「データ dr 」、「スヌーピング」、「フィッシング」)は、結果が人為的に統計的に有意になるさまざまな種類の統計的不正行為を指します。「より重要な」結果を取得する方法は多数ありますが、決してこれらに限定されません: パターンが見つかったデータの「興味深い」サブセットのみを分析します。 複数のテスト、特に事後テスト、および重要ではない実行されたテストの報告に失敗した場合の適切な調整の失敗。 同じ仮説の異なるテスト、たとえば、パラメトリックテストとノンパラメトリックテストの両方を試します(このスレッドでは、いくつかの議論があります)が、最も重要なもののみを報告します。 望ましい結果が得られるまで、データポイントの包含/除外を試行します。「データクリーニングの外れ値」だけでなく、曖昧な定義(「先進国」の計量経済学の研究、異なる定義が異なる国のセットをもたらす)、または定性的包含基準(例えば、メタ分析) 、特定の研究の方法論が十分に堅牢であるかどうかは、バランスのとれた議論かもしれません) 前の例は、オプションの停止に関連しています。つまり、データセットを分析し、これまでに収集したデータに応じてデータを収集するかどうかを決定します(「これはほとんど重要です。さらに3人の学生を測定しましょう!」)分析で; モデルフィッティング中の実験、特に含める共変量だけでなく、データ変換/関数形式に関する実験。 したがって、p-ハッキングが実行できることを知っています。多くの場合、「p値の危険性」の 1つとしてリストされており、統計的有意性に関するASAレポートで言及されており、ここでCross Validatedで説明されているため、悪いことでもあります。いくつかの疑わしい動機と(特に学術出版の競争において)逆効果的なインセンティブは明らかですが、意図的な不正行為であろうと単純な無知であろうと、それがなぜなのかを理解するのは難しいと思います。ステップワイズ回帰からp値を報告する人(ステップワイズ手順は「良いモデルを生成する」が、意図されたpを認識していないため)-値が無効化される)、後者のキャンプではあるが、その効果はまだありP上記の私の箇条書きの最後の下-hacking。 確かにpハッキングが「外にある」という証拠があります。例えば、Head et al(2015)は科学文献に感染している証拠的な兆候を探しますが、それに関する我々の証拠の現状は何ですか?Headらがとったアプローチには論争がなかったわけではないことを知っているので、文学の現状、または学術界の一般的な考え方は興味深いでしょう。たとえば、次のことについて考えていますか? それはどの程度一般的であり、その発生を出版バイアスとどの程度まで区別できますか?(この区別は意味がありますか?) 効果は境界で特に深刻ですか?たとえば、で同様の効果が見られますか、それともp値の範囲全体が影響を受けますか?P ≈ 0.05p≈0.05p \approx 0.05P ≈ 0.01p≈0.01p \approx 0.01 pハッキングのパターンは学問分野によって異なりますか? p-ハッキングのメカニズム(上記の箇条書きにリストされているもの)のどれが最も一般的であるか、私たちは考えていますか?一部のフォームは、「よりよく偽装されている」ため、他のフォームよりも検出が難しいことが証明されていますか? 参照資料 ヘッド、ML、ホルマン、L。、ランフィア、R。、カーン、AT、およびジェニオン、MD(2015)。科学におけるpハッキングの範囲と結果。PLoS Biol、13(3)、e1002106。